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Abstract

The reuse of software is one of the main goals in the field of software engineer-
ing. The principle of inheritance between object classes in object-oriented
languages was intended to enable software engineers to reuse their software.
However, during the last decade, it has frequently been questioned whether
inheritance really works as it was intended to, whether systems designed us-
ing inheritance can really be extended and maintained easily, and whether
the parts of these systems can be used in new systems.

The relatively young discipline of Generative Programming criticizes the
usual OO-methodology for its primary focus on the production of a single
system. It also states that creating reusable software requires a different
approach. If the design is aimed towards one particular system out of a
family of systems it is unlikely that the resulting implementation will be
usable for other systems in that family.

Instead, software engineers who are interested in the reusability of their
products should focus on a design which is targeted to a family of systems. In
this paper, I will validate this new approach by designing and implementing
a generic application framework for graphical editors of visual languages.

Chapter 1 gives an overview of selected GUI frameworks/toolkits, ex-
amines their design and analyzes the concepts behind them. It shows the
advantages and disadvantages of those systems from the client programmer’s
standpoint as well as from the system maintainer’s standpoint.

Chapter 2 analyzes various alternative design methodologies and imple-
mentation techniques. It shows how these concepts can be used to improve
the flexibility and reusability of object oriented software in general and ap-
plication frameworks in particular. The chapter ends with the description of
WeaveJ, a tool which implements some of the ideas and concepts introduced
in this chapter.

Chapter 3 describes the design and implementation of a generic, reusable
and flexible application framework for graphical user interfaces which can be
used to implement graphical editors of visual languages. The focus of this
chapter lies on the implementation of an object-oriented constraint solver
which is used to layout the components.
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Chapter 1

State of the Art

In this chapter I will give an overview of a choice of different application
frameworks and GUI toolkits implemented in different languages. Although
being far from complete, this overview should enable the reader to understand
the limitations of inheritance based approaches to framework design and
implementation.

The topic of this paper are frameworks for graphical editors. This chapter
covers both, GUI toolkits and graphical application frameworks, because they
are very similar. They are both centered around the idea of visual objects,
i.e. components1. They differ in their scope and in the way they influence
the application’s architecture. The scope of an application frameworks is
to take care of most if not every aspect of an application. The scope of a
GUI toolkit is just the components. From an architectural point of view,
application frameworks are built upon toolkits. Due to their larger scope,
application frameworks heavily affect the architecture of the applications.

1.1 Java: AWT and Swing

Java is an object-oriented language with a syntax similar to that of C and
restricted and stream-lined object-oriented semantics. It features robust mul-
tithreading, dynamic binding and loading; has a built-in garbage collector;
and supports persistence. The platform independence of Java programs was
a major objective during Java’s language design. A compiled Java program
should run without modification or re-compilation on any platform for which

1A more precise definition can be found in the terminology on page 173
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2 CHAPTER 1. STATE OF THE ART

an implementation of the Java Virtual Machine (JVM) exists.2

Java is easy to understand and is free of the obstacles found, for example, in
C++. It supports distributed computing (RMI, CORBA). Java programs are
relatively small, which allows code to be downloaded on demand at runtime.

Java programs are an order of magnitude slower than their C or C++
counterparts. This is true even today, although new JVM implementations
(HotSpot, [SUN]) have improved performance significantly. Java has also
suffered from its poorly written first release runtime library (for examples
see [Bec00]) and its lack of an open language standardization process. In
the past, Sun addressed both issues with the Java Community Process and
improvements to the runtime library, i.e. new container classes, JFC, etc.

1.1.1 The Design of AWT

When Java was initially released it came with a set of packages for com-
mon programming tasks. Among them were stream and file I/O, time and
date calculation, data type conversion, character string manipulation, net-
work socket communication, object persistence and data structures (con-
tainer classes). It also came with a package for graphical user interface
programming: Abstract Windowing Toolkit (AWT).

According to [Eck00] the first release of AWT was designed in only one
month. Because of that it seems only logical that AWT would lack many of
the features which developers of real-world applications find vital. One of the
most serious limitations of the first release was that the developer needed to
subclass AWT components in order to handle events generated for that com-
ponent. This was soon fixed for the second release, which allowed developers
to add event-handlers dynamically to component instances. Unfortunately,
the second release had to be compatible with the first one, which meant that
both event handling schemes had to coexist. This caused some confusion
among programmers.3

It was one of AWT’s major design goals that it conform to the write-once-run-

2It is certainly true that the byte-code of a compiled Java program can be executed
by any JVM implementation that adheres to the VM-specification. Inside the JVM, there
needs to be platform specific code, aka. native code, which translates between Java’s
runtime library and the operating system API. This native code often introduces subtle
differences between the various JVM implementations. In reality, a Java program usually
needs to be modified, i.e. ported, to run on a different platform.

3This point becomes even more important when one takes into account that Java
attracts inexperienced programmers because of its promised simplicity.
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anywhere strategy of its implementation language. The designers realized
that there were two different ways to enforce AWT’s platform independence.
The first approach made use of existing standard components native to each
platform. Taking the second approach meant implementing the major part
of the components in Java itself and writing very little native, i.e. platform
dependent, code to access the target operating systems graphical output
subsystem.

The designers chose the first approach - a component implementation in
Java and native code acting as a bridge to the so called peer, a platform
specific component. An example of this is a simple push button. The but-
ton component consists of a class called Button, an abstract class called
ButtonPeer, and ButtonPeer-derived classes containing mainly native meth-
ods - one derivative per platform.

This approach is advantageous, in that a user of a Java AWT application is
faced with the natural GUI for his/her platform. On the other hand, this
approach also has disadvantages; the main one being:

• AWT only provides access to the intersection of the sets of components
and interactions available on each platform. Tabbed dialogs for exam-
ple, i.e. dialogs with more than one page, are common on Microsoft
Windows platforms but not on X-Windows/Motif platforms, forcing
application programmers to compensate for the missing tabbed dia-
log feature if their main target platform is Windows. The resulting
application is not intuitive anymore to the average Windows user.

• A considerable part of AWT consists of native code specific to each
platform. This makes the JDK harder to port to new platforms and it
discourages application programmers from understanding and extend-
ing AWT.

• There are many subtle differences between the AWT implementations
of each platform because it is virtually impossible to prevent platform
specific details from shining through. These differences counteract true
platform independence since programmers have to write platform spe-
cific code that makes up for the discrepancies.

Beginning with JDK 1.1, AWT allowed for ‘peer-less’ aka light-weight compo-
nents, that is components without a native peer. That enabled programmers
and third-party vendors to write their own pure-Java components and mix
them with heavy-weight AWT components.
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1.1.2 The Design of Swing

Sun, becoming aware of the severe shortcomings in the design and implemen-
tation of AWT, attempted a fresh start. The result was the Swing toolkit,
which addresses all the above mentioned drawbacks. Swing is part of Sun’s
Java Foundation Classes (JFC) and its main advantages and disadvantages
are as follows:

• Swing provides a rich set of light-weight (peer-less) components, which
enables programmers to focus on their original tasks instead of heaving
to work around the lack of standard components. This saves time and
improves the uniformity of user interfaces.

• Swing supports pluggable (dynamically exchangeable) look-and-feel.
Ideally there could be one look-and-feel per platform which imitates
that platforms native look-and-feel. Nevertheless, past experience has
shown that most programmers tend to stick to the standard look-and-
feel.

• Swing finally supports the Model-View pattern, also known as Ob-
server, as an integral part of its design. AWT has no such mechanism
built in.4

• Swing offers increased adaptability and extendibility and does not rely
on inheritance to achieve it. Instead, Swing allows the programmer to
customize components by implementing call-back interfaces (JTable’s
CellEditor and CellRenderer for example) to which the main com-
ponent then delegates part of its work. Although this is an improve-
ment, customization is only possible at places where the designers had
intended it.

• Swing is complex and harder to understand and learn.

• Swing is large. If an application uses Swing components, the whole
Swing JAR file needs to be deployed with it.

• Swing was designed to be compatible with AWT. Consequently, Swing
has a single rooted inheritance hierarchy and its root class is directly

4Since JDK 1.0 the Java runtime library includes the class Observable and the interface
Observer which provide a trivial implementation of the Observer pattern. Nevertheless,
AWT does not make use of this implementation of the Observer pattern nor does it
integrate the Observer pattern at all.
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derived from AWT’s Container class. However, Sun recommends that
AWT and Swing components should not be mixed in one application or
applet; so nobody really needs this kind of compatibility. Personally, I
think that a clear cut would have been the better decision.

1.1.3 The Observer Pattern in Swing

Since I will repeatedly refer to the Observer pattern, it would be helpful to
understand why this particular pattern is so important for GUI programming.
Usually a user interface is a graphical representation of a programs internal
data. The representation used may be for viewing only or it may allow the
user to manipulate it and thereby manipulate the represented data. It is
essential to establish a synchronization scheme between the representation
and the data such that both remain consistent. Additionally, there may be
different possible representations of the same internal data. In some cases
multiple such representations need to be visible simultaneously.

All the above mentioned features recur in almost every program that has a
graphical user interface. From recurring features and program behaviour a
Design Pattern[GHJV95] can be extrapolated. The design pattern I describe
here is commonly known as Observer.5

In Swing almost every component acts as a listener (Observer, in the stan-
dard pattern). To use this component, the client has to implement the corre-
sponding model interface. The model declares methods that will be invoked
by the component after the model has informed the component about changes
in the data.

The JList component, for example, implements the ListDataListener.
This interface contains methods which notify the list about certain changes
in the underlying data. There is also the ListModel interface, which must
be implemented by the client. This interface contains methods for regis-
tering and unregistering a listener (Attach() and Detach(), in the standard
pattern), retrieving an element by its index and getting the total number of
elements to be displayed.

Each component makes certain assumptions as to how the data it displays
is structured. A text field requires a character string, a list requires a one-
dimensional field of elements and a table requires a two-dimensional field of
elements. It is therefore necessary that each component defines its own pair

5The occurrences of this pattern are not restricted to GUI programming, however.
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of model and listener.

The registration of listeners and their notification is something all models
have to do. This suggests that application specific models should inherit from
some toolkit/framework-specific parent class which implements the shared
behaviour. Unfortunately, models in Swing are interfaces and as such cannot
contain or inherit functionality. Therefore, Swing provides abstract helper
classes, which are incomplete implementations of the model interface and
which relieve the application programmer from the burden of managing the
listeners. The application programmer can use the helper as the base for
his/her own implementation of the model.

This approach becomes problematic when one application class wants to
serve as a model for multiple different components. Dialog windows are
examples of such classes. Swing application creates a dialog window by
deriving Swings’s JDialog class. The components on the dialog are created
during the initialization of the dialog subclass. If the dialog contains a list
and a tree component, the dialog subclass would have to implement two
different model interfaces: ListModel and TreeModel. The helper classes
would be useless in this case, because helpers need to be extended and the
application specific dialog class already extends JDialog.

Multiple inheritance would resolve the problem but Java does not have mul-
tiple inheritance. Instead, Java has inner classes. The dialog subclass of the
above example can use non-static inner classes for each model. The inner
model classes can extend a helper class and have access to their outer class’
members.

Inner classes in Java are classes whose definition is nested inside another class
definition. There are static inner classes whose purpose is mainly better code
organization, i.e. keeping related things together and preventing name space pol-
lution.6

Non-static inner classes additionally have access to all of their outer class members.
To do so, every instance of a non-static inner class keeps a hidden reference to the
outer class instance that created it. Furthermore, an inner class (static and non-
static) can extend any class or implement any interface, completely independent
of its outer class. Java’s non-static inner classes are an example of using object

composition as an alternative to multiple inheritance. Instead of having the outer
class C extend more than one base class (B0, B1, B2, . . .Bn) one could have C
create instances of inner classes Ii each of which extends one of the base classes

6The names of private inner classes are not visible outside the outer class. Public inner
classes can be accessed as Outer.Inner which also keeps the global name space clean.
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Bi except B0 which is extended by C. Instead of handing out a reference to itself
when a Bi sub-type is required, it hands out the reference to an instance of Ii.

Thus, the inner class objects have access to the outer class object and more than

one base-class can be extended. The major disadvantage of this technique (and

others using object composition) is object schizophrenia which will be examined

in later sections.

1.2 Inheritance: A Real World Example

In the world of object oriented programming, inheritance plays a major role
and has often been claimed to be the main concept behind reusable software.
Unfortunately, this claim has not been lived up to. In this section I will an-
alyze why. According to [Boo94], software reuse can be achieved in different
ways:

“Ultimately, software reuse can take on many forms: we can reuse
individual lines of code, specific classes, or logically related soci-
eties of classes. Reusing individual lines of code is the simplest
form of reuse. . . .We can do far better when using object oriented
programming languages by taking existing classes and specializ-
ing or augmenting them through inheritance. We can achieve
even greater leverage by reusing whole groups of classes organized
into a framework.”

The first observation is that code reuse can be accomplished at different levels
of granularity. Another observation is that the intent of reuse increases with
the level of abstraction. A person writing a single line of code or a even a
whole method does not intend for someone to copy it into a different project
later on. It is much more likely that a person which designs a class, does
so with the intention to enable someone else to reuse the class by inheriting
from it. Finally, a framework is certainly designed to be reused. In this
thesis I will focus on the reuse of single classes and the reuse of frameworks.
Inheritance is probably the most widely used way of reuse on a per class
level. This is why will start with an analysis of reuse through inheritance.
The reuse of whole application frameworks follows in sections 1.3, 1.4 and
1.5.
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1.2.1 What is Inheritance?

Probably the most common pitfall for programmers regarding inheritance is
the lack of distinction between all the different effects it has on the inheriting
class as well as the inherited one:

• The sub-class is a sub-type of its super-class type. This means that
an instance of the sub-class can be treated as if it were an instance
of its super-class. The sub-class sharing its super-class’ interface is
yet another way of seeing it. The interface of a class is a description
of its behaviour as opposed to the implementation of the behaviour.7

An interface is similar to a contract signed up by the class. It is one
of Java’s major achievements to have introduced special support for
separating interfaces from their implementations.

• The sub-class shares behavioural implementation and state with its
super-class. This is also referred to as implementation inheritance.
The problems associated with multiple inheritance in C++ result from
this effect of inheritance. It is perfectly acceptable for a class to im-
plement multiple interfaces. Inheriting from multiple implementations
can create many problems.

• The sub-class has more intimate knowledge about its super-class. The
sub-class can access the implementation details of the super-class. Most
object oriented languages provide greater control over this level of ac-
cess.

• The sub-class and the super-class share a name-space. In Java, for
example, this is the name-space for public and protected members.

The problem with class inheritance is that if you need one effect you will
automatically get the others as well.8 The following example will illustrate
this.

7In Java, the declaration of a class’ interface is inline with the implementation. In
C++, the class’ interface (aka declaration) can be separated from its implementation (aka
definition) by putting it in a separate header file.

8In some languages like Java there is a distinction between class and interface inher-
itance. The problem with inheritance between classes in Java is that it always inherits
interface and implementation. Among classes, C++ distinguishes implementation-only
(modifier private) and interface (modifier public) inheritance. The latter term may be
misleading: public inheritance in C++ inherits both, the base-class’ interface as well as
its implementation.
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1.2.2 Inheritance: A Real World Example

Imagine that you are an application developer in a small software consulting
firm and you are assigned to a project for a larger company. Your part of
the project is the front-end, which will be employed by its users everyday to
enter large amounts of data. The front-end will comprise a dozen different
forms, each containing 10 to 30 components - mostly text fields, push buttons
and lists. Due to the amount of data, the users request that they be able to
operate the whole front-end using keyboard keys only. For certain reasons the
program is written in Java and since the GUI builder used in your company
only supports AWT, you are forced to use AWT.

Unfortunately AWT does not fully support keyboard navigation in an intu-
itive manner. AWT adheres to standard GUI guidelines for keyboard input
and therefore the navigation between fields is done using the tabulator key.
The return key closes the form as if the OK button had been clicked. The
users however, request be able to navigate between fields using the arrow keys
and that hitting the return key advances to the next field. Because of this
and other requirements you decide that you need to add some functionality
to every AWT component class that you use.

Adding functionality to classes for which you do not have the source is gen-
erally done using inheritance: you inherit from the class to be extended and
add the necessary functionality to the derived class. This approach becomes
problematic when you need to add the same functionality to several classes.
Provided that all inherit from a common base, one might be tempted to de-
rive from their base. In your case the common base is java.awt.Component,
the super-class of all the components on your forms. You can, of course,
derive from java.awt.Component but you would also need to make the com-
ponent sub-classes (lists, buttons and text-fields) inherit your new common
base (figure 1.1). With Java this is not possible without modifying source
code, which may not be an option because you simply do not have the sources
or because you are not willing to re-apply the changes to every new release
of AWT. Generally, it is virtually impossible to insert a Java class into the
inheritance lattice.

Theoretically, making a Java class inherit a different super-class is possible
by modifications on the byte-code level. The binding between a class and its
super-class is rather weak (just a few entries in the class file’s constant pool).
If the new super-class is a derivative of the old super-class the modifications
should be transparent to all sub-classes and the old-super class. A language
which supports dynamic inheritance (SELF) will be introduced in section 1.6.
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Figure 1.1: Modifying the inheritance lattice. The left hand class diagram
shows the original inheritance tree, the right hand diagram shows the modi-
fied one.

The only option left is to derive from every component class which you use,
namely Button, Textfield and Choice. The functionality that you initially
wanted to be shared is going to be duplicated in all three derived classes.9 To
lessen the impact of duplication, you decide to encapsulate that functionality
in a separate class and to forward requests to an aggregated instance of this
class from within the derived component classes.10

For other reasons you also have to add a minor feature to the text field class.
(This example is based on a real world project and the true reason for the
tweak is rather complicated. In fact, it is a work-around for a bug introduced
by a third party extension to text fields). The text field class has a method
called select() which marks the whole text in the text field component.
What you need to do, is to fake the return value of the getText() method
while select() is active.

private int inSelect = 0;

public String getText( ) {

// when select() asks for the text

if( inSelect > 0 ) {

return String.rtrim( getFormattedText( ) );

}

9This is very similar to the helper class problem seen in Swing.
10Because you are using a GUI builder based on JavaBeans a new BeanInfo class for

each of the derived classes is also necessary.
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}

public synchronized void select( ) {

inSelect++;

// we know that super.select() will call getText()

super.select( );

inSelect--;

}

This work-around is only possible because of the tight coupling between
super-class and sub-class. There is nothing bad about this particular work-
around, other than that it may only work for the current release of AWT.
For a work-around this is acceptable. What is harmful, is that those kinds
of dependencies between derived and deriving class are possible and even
encouraged by inheritance-based object oriented languages.

The intimate knowledge which a deriving class has about its super class
breaks encapsulation and violates the hiding principle of software engineer-
ing. This is why inheritance is referred to as white-box reuse as opposed to
black-box reuse [Szy99]. This hiding principle, separating interface from im-
plementation, is a primary prerequisite for the creation and maintenance of
reusable class libraries. Inheritance is often regarded as a way of reusing and
customizing the classes in the library. In reality it makes the maintenance of
libraries harder because it increases the likelihood that a change to a library
class - while still in accordance with the interface contract of that class -
breaks classes derived from the changed class. This problem is also referred
to as the Fragile Base-Class Problem [Szy99]: modifying the base class might
(1) break classes derived from it or (2) make it necessary to recompile the
derived classes. In Java the second case can only be caused by modifications
to the interface of a class.11

Most OO-languages offer the option to restrict the access from sub-class to
super-class. For example, in Java one would use the member access mod-
ifier private to prevent sub-classes from accessing a particular super-class
member (method or field). Nevertheless, it is still possible for the sub-class
to override any non-private method in the super-class. This introduces the
above mentioned dangerous dependencies between sub-class and super-class.
Java has a keyword to control the overriding of class members (final). Con-
scious use of this feature can definitely be used to tame inheritance based
reuse. Unfortunately, that would also limit the flexibility of the framework

11The good news about Java is, that its byte-code verifier (part of each JVM) is guar-
anteed to detect such incompatibilities at run-time.
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user. Overriding is one of the key aspects of inheritance and restricting over-
riding questions the whole concept of inheritance. It would be much better
to switch to a different language idiom to achieve reuse. These alternatives
will be examined in the next chapter.

The following list summarizes the drawbacks of inheritance.

• In most OO languages it is static. The super-class of a class can only
be exchanged if the sources to that class are available.

• It does not allow developers to add functionality at higher levels of the
inheritance tree.

• Given that it introduces a more tight coupling between sub and super-
class, it violates the hiding principle of software engineering.

• In most OO languages it blurs the distinction between the interface of
a class and its implementation. Informally, if a class is supposed to
act like another class, there is no way of doing so other than inheriting
from it and thus sharing its implementation.

These are very general statements and wherever there is a rule there also is an
exception. There are languages that support dynamic inheritance (SELF).
Other languages support parameterized inheritance (C++ templates) and
still others have a dedicated concepts for interfaces and inner-classes (Java).
This just shows that language designers have searched for alternatives. Some
of the techniques and tools which will be examined shortly are based on these
alternatives.

1.3 C++: Unidraw

Unidraw [VL90] is a framework for building graphical editors written in C++.
One of its authors later participated in the research on design patterns, some
which can already be found in Unidraw. In this section I will analyze how
multiple patterns were incorporated into the same design and address selected
design decisions made by the authors of Unidraw.

1.3.1 Weaving Design Patterns

A design pattern is a way of reusing pieces of software design as opposed
to reusing pieces of the software itself. It is a way for experienced software
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developers to share their knowledge. Although a pattern is something that
appears in recurring instances, the applications of a design pattern do not
necessarily look identical. A design pattern is usually discovered by analyz-
ing and extracting the similarities between solutions to recurring problems.
Design patterns also aid in documenting and understanding software because
they establish common terminology and because they structure the design
into recognizable pieces. Design patterns focus on the collaboration between
objects, whereas traditional object oriented design often focuses on the fea-
tures of objects and their classification into a hierarchy of generalizations,
i.e. classes.

Design patterns are extracts of designs. For the creation of real-world appli-
cations and frameworks the reversed process of pattern discovery has to be
used; that is, patterns which existed separately before have to be combined
with each other - the patterns have to be woven.

Many patterns consist of collaborating objects. Because objects in most OO
languages are instances of classes we can also say that classes define the
collaboration. Each class taking part in a collaboration is assigned to a role.
If software uses more than one design pattern, it is likely that one class
plays more than one role simultaneously. So, the process of pattern weaving
involves incorporating more than one role into a class. This can be done in a
variety of ways. I will examine the different techniques in the next chapters.
For now I will focus on an analysis of how Unidraw combines patterns.

The two most central patterns in Unidraw are Observer and Composite.12

The Composite pattern is used to compose objects into a tree structure rep-
resenting part-whole hierarchies. It lets clients treat individual objects and
compositions uniformly. In the Composite pattern the interface of compound
objects (objects made of other objects) is the same as that of atomic objects.

Treating composite and atomic object the same may be advantageous for the
traversal of the object tree but it leads to the anomaly that atomic objects
have a method to add another object to them. Calling this method will cause
an runtime error. The Composite pattern trades type safety for transparency
(uniform interfaces of atomic and compound objects). There are alternative
implementations which are especially useful in languages which offer run-time
type checking, e.g. Java.

12The authors of Unidraw do not use the terms Composite, Observer or Design Pattern.
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Weaving Observer and Composite

In Unidraw the two patterns are combined as follows: the roles of the Ob-
server pattern (subject and observer) manifest in two classes - Component and
ComponentView. Each component is a pair of Component and ComponentView
instances. In addition to the methods needed for the roles in the Observer
pattern, both classes also contain methods for iterating over the children.
The default implementation of these methods is empty in both classes. For
atomic graphical components (components that are represented by visible
objects and do not consist of other objects) there are the GraphicComp and
GraphicView classes. Compound graphical components are implemented by
the classes GraphicComps and GraphicViews. A UML class diagram of this
can be found in figure 1.2.
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Figure 1.2: The Composite and Observer patterns in Unidraw.

In Unidraw the interface to compound and atomic components is not as uni-
form as the standard Composite pattern suggests. It is split into two pieces,
child traversal and child manipulation. The traversal interface is indeed
uniform - even atomic components have it. The manipulation interface is
introduced by compound specializations of Component and ComponentView,
e.g. GraphicComps and GraphicViews. This has the advantage that the
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manipulation interface can be constrained to a particular type of children.

A disadvantage of this technique is the need for duplication of child manip-
ulation code. Of course, there are remedies for this problem (delegation,
forwarding) but it still obscures the design. In section 2.4 I will show how
type safety can be achieved while avoiding duplication.

Subject–View Symmetry

One also observes what appears to be a minor anomaly in the Observer pat-
tern. Graphical objects like points, lines, rectangles or text, which one would
intuitively characterize as pure views, are modeled in Unidraw as compo-
nents, thus consisting of a subject (GraphicComp) and a view (GraphicView).
This leads to the interesting perception that there seems to be a symmetry
between subject and view: each view is also a potential subject of another
view, which in turn might be the subject of another view, and so on. In
[VL90] the authors of Unidraw differentiate “between (1) the state and oper-
ations that characterize objects and (2) the way the objects are represented
in a particular context.” Apparently, an object’s representation is the state
of another object, and this state can be subject of another representation.
Unidraw does not offer this flexibility - an object can either be a subject or
a view, but not both.

In some cases it can be useful to be aware of the subject–view symmetry.
For example, the UML standard defines models as complete abstractions of
systems, and diagrams as graphical projections of (subsets of) models [SA98].
This is very close to the idea of the observer pattern. A hypothetical UML
authoring tool would use the observer pattern internally to represent the
interdependencies between the logical model, e.g. the classes, their members
and their relations, and the graphical projections of the model, e.g. class
diagrams. Interestingly, the UML standard does not only employ diagrams
and models. It also defines a meta-model 13 which is needed to specify the
UML standard using a subset of UML itself. It is organized into different
diagrams, each describing a the system from a different perspective. The
perspectives are (source: [SA98]):

• structure (class and object diagrams),

• behaviour (sequence, collaboration, state-chart and activity diagrams),

• implementation (component diagram),

13and a meta-meta-model
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• environment (deployment diagram),

• user (use-case diagram).

It would make sense to mirror UML’s meta-model concept in the architecture
of an hypothetical UML authoring tool, such that the meta-model is the
abstraction of the system to be modeled. It describes the system on a very
general level. This meta-model would be observed by models — one for
each perspective — which in turn would be observed by the corresponding
diagrams. Consequently, a model is both, subject and view, and it plays
both roles simultaneously.

Therefore, any modern GUI application framework should support the sub-
ject–view symmetry as an integral part of its design. The easiest way to do
that is to put subject and view functionality in the base class of the class
hierarchy. For example, the ET++ framework which will be described briefly
in section 1.5 does that in its VObject class — the base of all other visual
object classes. But doing so leads to overweight base-classes and blurs the
conceptual distinction (separation of concerns) between a subject and a view.
Ideally, subject and view functionality should be defined and implemented in
separate units (classes or interfaces) but there should also be a mechanism to
merge the subject and view functionalities in case an application has classes
which play both roles simultaneously.

1.3.2 Layout

So far I have discussed how Unidraw employs consistency of representations
and part-whole hierarchies. Both are important concepts in the domain of
graphical editors. Another concept is layout.

The term layout describes the physical arrangement of components on the
output device, affecting their size, position and Z-order.14 The simplest way
to layout a toolkit’s components is to have the application programmer man-
ually define the fixed position and size of components. Using a GUI builder
in which the programmer can drag components or specify primitive layout
rules (grid, position and size alignment) is definitely more satisfying and pro-
ductive. Sometimes an application allows the user to change the size of the
forms. An adjustment of forms to different screen sizes may also be desir-
able. Resizing a form requires a run-time revalidation of the layout, which

14The Z-order controls the overlapping of graphical objects; that is, it is the order of
components from front to back.



1.3. C++: UNIDRAW 17

is not possible if the coordinates are fixed. For this purpose, most toolkits
provide special layout classes that allow a higher level means of arrangement
of components. Some GUI builders also support interactive composition and
manipulation of such abstract layouts.

A toolkit’s layout classes often assume that the components have rectangu-
lar bounds. Although this might be appropriate for GUI toolkits, such a
simplification is not reasonable for graphical editors. Consequently, Unidraw
provides a much more sophisticated layout.

In Unidraw there are special graphical components called connectors. The
connector’s subject is used as a child of subjects belonging to compound
graphical components. There is a view for connectors too (a crossed circle),
but most compound graphical components omit it in their own view. A
connector can be one of three types: pin (zero degrees of freedom), slot (one
degree of freedom), and pad (two degrees of freedom). When combined in
pairs, connectors form a connection. When a pin is connected to another pin,
both will always have the same coordinates. A pin connected to a slot can
move along the slot but must stay within the slot’s bounds. A pin connected
to a pad can move in both dimensions inside the pad’s bounds. Figure 1.3
illustrates examples of connectors.

Figure 1.3: Unidraw: Examples of combining different connectors.

Connectors also have a mobility attribute, which can be fixed or floating.
This attribute determines which of the connectors in a connection actually
moves to satisfy the connection’s constraints. Furthermore, each connec-
tion is associated with a piece of “glue” which determines its elasticity and
deformation limits.

The layout model is solved by a rather monolithic CSolver class, which
solves a network of connections by recursively reducing the connection net-
work. The reduction take place when the solver finds a primitive combination
of connections like parallel and series connections. The solver temporarily
replaces the combined connections with a single equivalent connection and
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carries on with the reduction until all connectors are fixed or when there is
just one connection left. On return from each level of recursion, the solver re-
constructs the original network by applying the deformation of the equivalent
connection to each of the original connections.

Unidraw’s layout model is a very mechanical one, making it predictable and
logical for both the user and the programmer. The downside of mechanical
models is that they might take a longer time to solve than simpler models.
What all these layout models have in common is that they describe a set
of constraints and that these constraints are solved in order to compute the
actual geometry of the components. The type of constraints which describe a
layout of graphical components needs to be simple enough such that they can
be solved within fractions of seconds. This is because the user should be able
to modify the layout interactively. On the other hand, the more powerful
constraints are, the easier it becomes for the programmer to describe the
layout. Therefore, the designer of an GUI application framework has to find
a good tradeoff between the constraint’s complexity and the responsiveness
of their solution algorithm.

Some graphical editors may need a layout model with a simple constraint
requiring that the components do not overlap. The user can freely drag
components around, and the dragged components could “push” the other
components aside, just like coins on a table. The constraints in this layout
model form a system of linear inequations. Assuming that all components
have rectangular bounds and each component has a top, a left, a bottom and
a right edge, there would be one equation for every pair of components. For
example, two components c1 and c2, each having four edges t1, l1, b1, r1, t2,
l2, b2 and r2, yield the following inequality:

(t1 > t2∨ b1 < t2)∧ (t1 > b2∨ b1 < b2)∨ (l1 > l2∨ r1 < l2)∧ (l1 > r2∨ r1 < r2)

For n components n2 inequalities of the above kind are needed.

This type of constraint cannot be modelled using Unidraw’s connectors. This
is because UniDraw does not support the disjunction of constraints. It is
impossible to specify that a component may either appear to the left or to
the right of another component. In most cases this is not even necessary and
Unidraw’s model is sufficient. Ideally, an application framework for graphical
editors should employ a means of exchanging the layout model. Based on the
simple assumption that components have rectangular bounds, many different
types of constraints are possible — for example, the mechanical Unidraw-like
type or the above inequation type.
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1.3.3 Commands

Sometimes it is useful to send arbitrary messages to objects without having to
(1) declare reception ability, i.e. to ensure that the message is implemented
in the receiver and (2) know the receiver in order to issue the message. It
is not possible to implement messages like that in C++ or Java using plain
methods because method invocation always presumes a receiver instance.

The need to declare the reception ability can be avoided when using virtual
methods: The base class of all receivers defines one virtual method for ev-
ery type of message to be received. In the base-class this method has an
empty body. If a receiver wants to implement a particular message it sim-
ply overrides the corresponding method. Thus, every message can be sent
to any receiver, regardless whether the receiver implements the message or
not. If the receiver does not implement the message, it will be caught by the
base-class. The downside of this approach is that the base-class needs to be
modified when new types of messages are added to the system.

Unidraw uses a variation of the Command design pattern for this purpose.
The command pattern “lifts” messages from ordinary methods to objects and
makes them first-class citizens. One advantage of the command pattern is
that the receiver of a message does not have to be specified when the message
is sent. Instead, a reference to the receiver is stored within the command
object and the reference is set when the command is created. Usually, the
receiver creates the command object and registers it with the sender. The
command pattern decouples sender and receiver because the sender does not
need to know the receiver of a message.

Another benefit of this pattern is that only one receiving method needs to be
declared in the base-class for the receivers. When new types of messages are
added to the system, the receiver base-class does not need to be modified. As
a result the base class stays lean and manageable. The downside of this is that
the messages type has to be decoded in the receiver. If a receiver implements
many different messages, this will lead to large switch statements or long
chains of if statements.

Furthermore, commands can be used to parameterize the sender. Parameter-
ization in this context means that the sender can issue a command without
having to know the particular type of command it issues.
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1.4 C++: InterViews

InterViews [LCI+92] is a sophisticated class framework featuring everything
from simple geometrical shapes and text up to interactive components (wid-
gets). In InterViews even primitive geometrical shapes and text characters
are modeled as objects and the widgets are made up of those primitives.

This is very different to Java’s AWT and Swing where, mostly due to per-
formance reasons, the components simply invoke methods that draw points,
lines, boxes and text. AWT/Swing’s and InterViews’ approach differ in the
level of physical (object-structural) granularity. In AWT and Swing the most
granular object is the widget (aka. component in Java terminology) whereas
InterViews’ most granular object is a glyph. In InterViews all visible objects,
e.g. points, lines, characters, character strings and even whole popup menus
are glyphs. Furthermore, AWT and Swing are not only of limited granu-
larity, they also do not allow true composition of objects - the most central
aspect of black-box software reuse. In AWT there is the special component
Container which is a direct subclass of Component. But as its name implies
it does nothing but contain other components and perform the related ac-
tivity like input focus handling and layout. The relationship between object
composition and black-box reuse will be subject of section 1.6.2.

The problem with the AWT approach is again the amount of duplicated
functionality. Soon after AWT was released, third party vendors offered
additional components or even sets of components that would replace the
original AWT components. If you look at KL-Groups’ tree and table com-
ponents [KLG], you will find that they completely draw themselves using
the drawing primitives in java.awt.Graphics. There is no sign of reuse.
In Swing this situation has improved. JTable, for example, uses a variable
component to render the cell values. This cell-renderer is implemented in a
similar way to a Flyweight, (see section 1.4.1) in a rather awkward way.15

The problem of limited granularity persists in Swing.

15The default cell-renderer is derived from JLabel which is not designed to be a fly-
weight. That is why the extrinsic state (foreground and background color, location, font
and value) must be set separately before the actual drawing operation is performed. Fur-
thermore, some frequently invoked methods are overridden with empty method bodies for
performance reasons.
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1.4.1 The Flyweight Pattern

The downside of fine-granular component structure is the sheer amount of
objects and the resultant quantity of storage. The Flyweight pattern deals
with this problem and the authors of InterViews were some of the first to dis-
cover it. The Flyweight allows sharing of objects by making the important
distinction between intrinsic (context-independent) and extrinsic (context-
dependend) state. Conceptually different objects, meaning objects that have
different extrinsic states but an identical intrinsic state, share one class in-
stance. To perform an operation, i.e. invoke a method on the shared instance,
the client has to pass the extrinsic state as an argument to the operation.
For a more detailed description see [GHJV95].

The Flyweight in InterViews is the glyph object. The Glyph class does
not incorporate any state at all. Sub-classes of Glyph may decide to share
instances by making the above mentioned distinction between extrinsic and
intrinsic state. Sharing of glyphs creates a glyph structure that is no more
purely hierarchical; instead it forms a directed and acyclic graph.

Although a glyph is defined in InterViews as “visual data” it can also be
invisible. Often invisible glyphs are used to decorate visible ones. The term
decoration originates from the Decorator pattern. A decorator adds respon-
sibilities to the object it decorates and its interface is usually wider than that
of the decorated object. The base class for decorating glyphs in InterViews
is Glyph’s sub-class MonoGlyph, which simply adds a method for setting
and getting the body, that is, the decorated glyph. A typical mono-glyph is
InputHandler which can be used to add event-handling to glyphs.

Every glyph may contain other glyphs, but there is also the special class
PolyGlyph, which adds detection of structural changes. Apparently, the in-
terface of composite glyphs is spread over two classes: Glyph and PolyGlyph.
The same approach can be found in the Composite pattern, allowing for uni-
form treatment of atomic and compound glyphs when traversing the glyph
structure.

1.4.2 Styles

Components often have properties like color and font that determine their
appearance. Most GUI toolkits implement such properties as attributes of
their component classes. In this case, every component has methods for
setting and getting its property attributes, e.g. foreground or background
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color. Text components also have methods for setting and getting text-
specific attributes, e.g. justification or font name.

However, most applications use uniform colors and fonts for all components
on their forms. Not doing so would make the user interface look distracting,
to say the least. Therefore, all components usually have the same set of
properties. Thus, the property attributes in most components have the same
value which wastes space for object storage. Furthermore, code needs to be
written to set the properties of every single component in the application
unless the default values of the properties are used.

InterViews uses styles to decouple the component’s properties from the com-
ponents. Glyphs which have the same set of properties all share one style. A
style is a set of pairs <name,value>. Both, name and value are strings and
as such lack type-information.

As the idea of letting components share sets of properties is very innovative,
its implementation in InterViews leaves room for improvements. For exam-
ple, property values should not be strings in order to enforce some degree
of type-safety and to eliminate the conversion from strings to actual values.
For example, RGB color values should be stored as instances of a Color class
or triples of integers rather than strings like "12,34,56". Also, there is no
need to identify properties using strings. Integer keys allow for faster lookup
and need less storage.

1.4.3 Factory Methods

Toolkits with fine granular component structure often need to assist clients
in object composition and creation. InterViews has several classes which
specialize on the production and assembly of components. This concept also
manifests in two design patterns: Abstract Factory and Factory Method. In
InterViews a factory is called kit. The most important kits are WidgetKit and
LayoutKit. A widget-kit creates a widget by assembling glyphs according
to a concrete look-and-feel. A push-button, for example, is made of a label,
two bevels and a mono-glyph that handles the events and invokes the client
action. Actions in InterViews are instances of the Command design pattern.

1.4.4 Layout

InterViews’ layout semantics is largely borrowed from Donald Knuth’s TEX
[Knu84]. It assumes that the space required by a glyph in order to be drawn
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is rectangular. Each of the rectangle’s dimensions have natural, minimum
and maximum sizes. The glyph’s actual space is a matter of negotiation
during which the glyph first requests a certain amount of space. After that
it will be granted the amount of space it may actually use, based on the
requests of other glyphs sharing the same drawing canvas.

The LayoutKit provides factory methods to

• tile glyphs horizontally (hbox()),

• tile glyphs vertically (vbox()),

• create a glue-glyph that can be used to fill the space between glyphs,

• create a stack of glyphs, out of which only one is visible at a time,

• center a glyph at a particular position,

• add a margin on either side of or around a glyph,

• make a flexible (stretchable) glyph fixed and

• make a fixed glyph flexible

All factory methods return a glyph. The tiling methods return a poly-glyph
whereas others take a glyph as an argument and return a mono-glyph wrap-
ping the argument glyph.

1.5 ET++

The ET++ toolkit [WG95] is an object-oriented framework for GUI appli-
cations. It is similar to InterViews in that both

• use C++ as their implementation language,

• are designed to be portable,16

• provide similar layout semantics and

16InterViews was initially targeted to X-Windows and Unix but ports to other operating
systems were added later.



24 CHAPTER 1. STATE OF THE ART

• help the application programmer to deal with C++’s lack of standard
mechanisms like garbage collection, container classes and runtime type
information

ET++ is, however, different to InterViews in that ET++

• does not incorporate the Flyweight pattern for components,

• has an object structure which is less granular than that of InterViews
(InterViews represents single characters as objects, i.e. glyphs),

• provides higher-level means of structuring an application such as Pre-
sentation, Document and Application and

• “hides” the Observer pattern by putting the Observer and Subject
interfaces into the Object base class.

Two of ET++’s concepts are worth mentioning in this context. One is the
notion of bottleneck interfaces and the other one is ET++’s screen update
mechanism.

1.5.1 Bottleneck Interfaces

In many cases the interface of a class in object-oriented software can be di-
vided into two sets of methods. These sets can be described as the bottleneck
interface and the convenience interface of a class. The methods in the con-
venience interface are simply front-ends for the methods in the bottleneck
interface which do the real work. Overloaded methods are a typical example
for that: one of the methods (often the one having the most verbose argument
list) is the bottleneck method whereas the other ones are just convenience
overloads.

For example, ET++’s VObject (visual object) class has numerous meth-
ods to set the origin and size of components: SetExtent(), SetOrigin(),
SetContentRect(), SetWidth(), SetHeight(), Align() and Move(). The
actual size and origin are altered in SetExtend() and SetOrigin() only. The
other mentioned methods all forward to one of these two methods. Hence,
SetExtend() and SetOrigin() belong to VObject’s bottleneck interface. In
[WG95] the authors say that it “. . . would be bothersome if all these meth-
ods had to be overridden in every subclass.” ET++ makes the distinction
between bottleneck and convenience methods explicit.
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The lack of explicitly documented bottleneck methods has an even worse
effect for the application programmer. Often, the application programmer
doesn’t even know which methods belong to the bottleneck interface. It
may turn out to be hard to figure which methods need to be overridden in
application specific subclasses. Java’s java.awt.Component class serves as a
bad example. It has 10 (!) methods which affect the position and size of a
component.

void move(int x, int y)

void reshape(int x, int y, int width, int height)

void resize(Dimension d)

void resize(int width, int height)

void setBounds(int x, int y, int width, int height) // !

void setBounds(Rectangle r)

void setLocation(int x, int y)

void setLocation(Point p)

void setSize(Dimension d)

void setSize(int width, int height)

Luckily, the JDK comes with the sources to Component, which reveals that all
these methods except one are non-bottleneck methods provided for reasons
of either convenience or compatibility. The only bottleneck method is the
first setBounds overload. Without access to the sources, this can only be
determined by trial and error.

Often, developers of applications and those of frameworks, libraries or toolk-
its aren’t even aware of the complexity that is introduced by the bottleneck
problem. For example, overriding a non-bottleneck method may actually
turn out to work as expected in some circumstances. When the applica-
tion is later extended it may not work anymore because the real bottleneck
method gets called and the not the overloaded method. This introduces bugs
which are hard to track.

On the other hand, a framework developer might incidentally turn a bot-
tleneck method into a convenience method and vice versa. This may well
break existing application code. ET++ demonstrates how this obstacle of
inheritance can be avoided by explicitly indicating which methods belong to
the bottleneck interface
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1.5.2 Screen Update

The authors of ET++ state in [WG95] that application frameworks and
class libraries differ in the way they structure the application’s control flow.
The user of a class library is required to “. . . know exactly when to call
which methods.” A framework, on the other hand, factors out much of the
control flow into the framework classes, simplifying the process of writing
applications.

Sometimes, factoring out control flow yields cleaner designs and better algo-
rithms too.17 For example, ET++ factors out all of the control flow for the
screen update into its view system. That way, redrawing is completely under
the control of the redraw system and the update process can be optimized
without interfering code of other component classes.

The ET++ update mechanism is asynchronous. The Draw method of compo-
nents is never called directly. Instead, a component will only be invalidated
when it needs to be redrawn due to some change in its internal state. Later,
when ET++ is idle, the view system asks all invalidated components to draw
themselves. The advantage of asynchronous screen update is that multiple
subsequent state changes will not trigger multiple redundant screen updates.
The disadvantage is that this scheme does not support animation directly.
Animation requires that state changes become visible immediately, i.e. with-
out any noticeable delay.

1.6 SELF: OOP without Classes

So far, this paper was focused on toolkits and frameworks implemented in
traditional object-oriented languages. I use the term traditional, because
they are largely covered by Booch’s definition [Boo94]:

Object oriented programming is a method of implementation in
which programs are organized as cooperative collections of ob-
jects, each of which represents an instance of some class, and
whose classes are all members of a hierarchy of classes united via
inheritance relationships.

This section is about SELF ([ABC+95] and [US91]), a mature object-oriented
language that does not adhere to the above definition, in that it does not

17There is even a design pattern related to this: Template Method.
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have the concept of classes. Such OO languages are usually referred to as be-
ing prototype-based because they use prototypes for object creation, whereas
traditional languages use class instantiation.

A language that does not have classes can not offer class inheritance either,
raising the question of how such a language supports reuse. Since we are
interested in alternatives to inheritance as a concept for software reuse, it is
worth having a look at SELF.

1.6.1 Language Concepts

Here is a summary of SELF’s important features:

• In SELF, everything is an object. This does even include methods.

• SELF objects consist of slots. Each slot has a name and a value. The
slot-name is a string, whereas the slot-value is a reference to an object.
A slot is a data-slot if it contains a reference to any non-method object.
Otherwise it is a method-slot.

• A SELF object is completely defined by its behaviour. Data-slots are
hidden underneath two method-slots: One for reading and one for writ-
ing the data-slot. The method-objects in both slots are built-in prim-
itives. It is possible to intercept access to the data-slot by replacing
these built-ins with user-defined methods.

• A SELF object can be created only by cloning another one. SELF
does not distinguish between prototypical and regular objects. Instead
every object can serve as a prototype.

• SELF has no classes and thus no inheritance between classes. Instead,
objects inherit directly from their parent object which is referenced by
a slot whose name starts with “*”.

• Although the parent slot can point to any object, most of the times it
will reference a traits object, which contains the shared behaviour for
objects of a kind.

• When a message is sent to an object, the object will be searched for a
slot with the message’s name. If one is found, the method object will be
cloned. The clone’s parent slot will point to the receiving object. Some
of the clone’s data-slots will be filled with the message’s arguments,
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and the method’s body will be executed. The remaining slots will be
used for the method’s local variables. Figure 1.4 illustrates this.

Figure 1.4: Method activation (source: [US91]).

• SELF’s Blocks are the third kind of object. Blocks are similar to
Lisp’s closures in that they contain a reference to the lexically enclos-
ing method-object, and thus have access to local-variables, arguments
and the current object, that is, the receiver of the lexically enclosing
method. See figure 1.5.

• Control flow is handled by objects too. A conditional, for example, is
implemented by the method ifTrue of Boolean objects, of which only
two exist: true and false. ifTrue requires two block-object arguments.
True’s ifTrue evaluates the first block argument and false’s ifTrue

evaluates the second one.

• SELF is, in many ways, similar to Smalltalk. Its syntax is closely mod-
elled after Smalltalk’s and it features run-time typing and reflection.
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Figure 1.5: The block [ 3 + 4 ] after activation. The dashed arrow denotes
the act of copying the scope slot into the parent slot of the block’s method
object clone. (source: [ABC+95]).

• SELF is a untyped language, i.e. it has no type declarations. Conse-
quently, the concept of polymorphism does not really apply to SELF.
Every SELF object may be used in place of another one. The message
lookup simply fails if the replacing object or its ancestors do not pro-
vide a matching slot. SELF does not support ad-hoc polymorphism
either.

SELF can be characterized using two terms: uniformity and minimalism. It
is uniform, in that everything is an object and that every object can be used
as a prototype for others. Its method lookup unifies closures, methods and
objects. SELF is minimal, in that it is untyped, does not differentiate classes
and objects, and uses methods for control-flow. It was shown, that SELF can
be used to emulate classes without loss in performance. This might indicate
that SELF represents the essence of object-oriented languages.

The parent slots of objects are assignable, allowing for dynamic inheritance
with the benefit of greater flexibility. It is possible, for instance, to insert a
new traits object into an existing inheritance tree at runtime, changing the
behaviour of many objects simultaneously. SELF also supports any number
of parent slots, thus allowing for multiple inheritance. The method lookup
algorithm is even able to handle cycles in the inheritance graph.
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SELF’s ability to pass around lexically scoped code-fragments, i.e. blocks,
makes it easy to create callbacks from a framework or toolkit into client
code. In Java, for example, something similar can only be achieved by hav-
ing a non-static inner-class implement a framework defined interface. The
Java approach suffers from a much noisier syntax and introduces significant
overhead because a Java class is not as light-weight as a SELF-Object. Fur-
thermore, SELF’s blocks have access to the lexically enclosing method’s local
slots; it is not possible to access the enclosing method’s local variables from
within an inner class.

1.6.2 Composition and Delegation

In section 1.2.2 inheritance was already characterized as an example of white-
box software reuse. The opposite is black-box reuse, a term yet to be defined.
When a white-box is reused, its inner structure and working principles are
subject of exploration and manipulation, making it hard to create new re-
leases of the white-box without breaking existing software that already reuses
it. A black-box, on the other hand, only exposes its interface. In [Szy99] ob-
ject composition and delegation are introduced as approaches to black-box
reuse. The book also deals with a the problems that arise when traditional
OO-languages are used to implement composition and delegation.

Composition is the technique of combining separate objects (components)
into a new object (composite).18 The key idea behind composition is that
the resulting capability of the composite is equal or close to the sum of its
components’ capabilities. Every component specializes on a particular aspect
of the composite’s functionality. The composite uses delegation to dispatch
incoming messages to its components. Delegation is similar to forwarding in
that both pass the message to one of the components. The lack of a common-
self [Szy99], also referred to as object-schizophrenia [CE00], causes problems
in combination with simple forwarding of messages. When two classes are
composed through inheritance, that is, one class inherits from the other,
only one object (an instance of the sub-class) is needed to embody both
classes’ functionality. Even functionality included by multiple and transitive
inheritance is still represented by one object. However, composition uses
multiple objects and every component object has a unique identity.

Consider an object that receives a forwarded message (see figure 1.6). Also

18Here, the terms component and composite are not limited to only denote graphical
components like user interface controls. Instead these terms are used to focus on the
process of assembling objects, i.e. their composition.
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assume, that the implementation of that message sends another secondary
message which is defined in component and overridden in the composite. One
would expect that the overriding method in the composite would receive the
message first. Unfortunately, if forwarding is used, the secondary message
would be received by the component first. This is because the self of the
component is still the implicit receiver. However, if delegation were used, the
secondary message would be sent to the composite instead. Thus, delegation
has to keep track of two selfs, the composite’s and the component’s self.
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Figure 1.6: Object-schizophrenia or the lack of a common self.

The desired behaviour can be implemented in traditional OO languages by
instrumenting every method with the additional argument self, which ref-
erences the current composite. Instead of sending messages to this (as in
this.foo() or simply foo()), every component would use self.foo().
Additionally, the composite has to provide dummy methods that forward
method calls to the components.

SELF is a language into which composition and delegation are already built-
in, and which consequently does not suffer from object-schizophrenia. The
composition of objects is formed through the parent slots. The parents
are the component, whereas the child is the composite. Delegation is per-
formed by SELF’s method-lookup, which first searches the current object for
a matching slot and continues with the current object’s parents, if it did not
find one. Furthermore, SELF also has a means for re-sending a message from
an overriding method to the overridden one.
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1.6.3 Conclusions

SELF demonstrates that OO-languages do not necessarily have to use classes.
In SELF there is no distinction between class and object composition. The
elegance of this simplified approach also becomes a disadvantage. SELF is
dynamically typed, which means that all type checking is done at runtime.
The benefit of statically typed programming languages is that the correctness
of program can be partially verified by the compiler in an automatic manner.

The authors of SELF claim that the separation of object description and ob-
ject instance is counter-intuitive and that SELF eliminates this unnecessary
complexity. I think that classes are intuitive because they represent how the
human mind works anyway: when we think about objects or communicating
with others about objects we do not necessarily mean concrete examples of
these objects. We treat them as the kinds of objects. According to the SELF
authors, class based OO languages cause “meta-regress”: a class is itself an
object which needs to be described by another meta-class which is again an
object and so on ad infinitum.19

Interestingly, this meta-regress occurs in many areas of computer science.
For example, SELF source code is text which describes the initial state and
behaviour of a SELF program when it is loaded into the SELF world. This
SELF program is a word in the SELF language which is defined by the SELF
grammar. In the SELF manual this grammar is specified using EBNF which
is, generally speaking, a language itself. The syntax of EBNF can be specified
in EBNF itself. This suggests that meta-regress is not counter-intuitive at
all - computer scientists and programmers use it all the time.

19In Java, for example, every object has a method called getClass() which returns a
reference to an instance of the class Class. This Class instance describes the class of the
original object. Since this Class instance is a normal object it also has the getClass()
method. Calling this method on the Class instance returns another Class instance de-
scribing Class. This is where the meta-regress actually stops. Calling getMethod() on
the Class instance describing Class returns the same object; that is, for any object o,
o.getClass().getClass() == o.getClass().getClass().getClass() is always true.



Chapter 2

Alternative Techniques

The observations made in the previous chapter can be summarized as follows:

• The incorporation of design patterns (pattern weaving) is an essential
part of the framework design.

• OO-software with static single-inheritance hierarchies are not truly
reusable.

• The presented GUI frameworks employ many good concepts regarding
component layout, event handling, screen update, property manage-
ment and object creation.

Consequently, this chapter is about alternative design and implementation
techniques which can be used to develop truly reusable object-oriented soft-
ware. It focuses on the following questions:

• Which composition techniques can be used to weave design patterns?

• What alternatives are there for single-inheritance based designs?

• Which design methodologies match the presented implementation tech-
niques?

2.1 Weaving Design Patterns

As I have shown in the first chapter object-oriented frameworks should em-
ploy design patterns and thus focus on the collaboration between objects.

33
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This is already true for some of the frameworks and libraries introduced in
chapter 1. Nevertheless, it would be ideal if the client programmer could
extend the framework to include new patterns and collaborations. Conse-
quently a good framework should be designed based on the notion of pattern-
weaving. Pattern-weaving describes the process of incorporating multiple
pattern roles into one class.

Figure 2.1 shows an example where three patterns (A, B and C) are woven into
four classes: Foo, Bar, Other and Any. Each box stands for an instance of a
class. Each pattern in this example consists of two roles. A role is described
by an interface, which is depicted by a small circle. Class instances collab-
orate in a pattern, when their corresponding role-interfaces are connected.

Figure 2.1: Design patterns and roles. Boxes denote objects ; role interfaces
are denoted by small circles and lines ending in small dots indicate collabo-
rations.

In the first chapter I have given examples for toolkits in which it is virtually
impossible to do that. C++ with its more flexible language constructs like
parameterized and multiple inheritance can certainly offer solutions if some-
one is stuck with a toolkit that needs to be extended. Java, on the other
hand, is more limited than C++ and may thus be less future-proof. The com-
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mon line of reasoning about how Java compensates for multiple inheritance
is that in Java interfaces can have more than one parent interface. But Java
only provides the composition of interfaces and not that of implementations.
So what is needed is a solution for pattern-weaving in Java. The benefit of
a pattern-weaving based design is not only that it supports future extension
and thus increased reusability - pattern weaving makes easier to understand
and maintain software systems because the role interfaces group the aspects
of functionality logically.

It is important to note the difference between pattern-based and pattern-
weaving-based designs. A pattern-based design consists of design-patterns.
A pattern-weaving-based design also allows for later incorporation of other
patterns into the design.

2.1.1 Using Delegation to Weave Patterns

Before I decided that a separate tool was needed to achieve a pattern-weaving
based design for a graphical editor framework in Java, I experimented with
Java interfaces, inner-classes, composition and delegation. Some of the solu-
tions I came up with represent a good compromise for small systems, which
is why I would like to introduce them here. The techniques presented are
intermediate steps towards the ultimate solution which is introduced at the
end of this chapter.

The first solution is a combination of delegation and composition. It defines
role interfaces and compositions of role interfaces, i.e. merger interfaces. The
composition of interfaces is simply done using interface inheritance; that is,
a merger interface extends the role interfaces which it merges. The role
and merger interfaces are implemented by role and merger implementation
classes. The basic idea behind this scheme is that the merger implementa-
tions delegate the work to aggregated instances of role implementations. I
would like to explain this in detail using an example which weaves two design
patterns.

Merging the Role Interfaces

Figure 2.2 shows the role interfaces for the two patterns to be woven in
this example: Composite and Observer. In Chapter 1 I demonstrated that
both patterns represent the core of most GUI frameworks. The Composite
pattern incorporates two roles: Leaf and Node. Notice that Node is extends
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Leaf, indicating that a node is a leaf. The roles of the Observer pattern are
Subject and View.
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Figure 2.2: Weaving the Observer and Composite pattern. Step 1: Weaving
the role interfaces.

Specifying roles as interfaces instead of classes is one of the keys to reusable and ex-

tendible software: local variables, method signatures and member variables should

not be declared using names of concrete classes. Java interfaces (or to some ex-

tent abstract classes) are a better alternative. When client and framework code

adheres this minor convention, role implementations can be exchanged without

the need to recompile many other client and framework classes. The only place in

which names of concrete classes must be used is object instantiation. This can be

remedied using factory methods or factory classes, two design-patterns intended

to avoid the use of concrete class names for object instantiation.

The empty merger interfaces SubjectLeaf, SubjectNode, ViewLeaf and
ViewNode represent valid combinations of the role interfaces.1 Merger in-
terfaces are needed to be able to declare variables2 holding objects which

1This example misses one point: sometimes it might be useful if views can be subject
of other views too.

2The term variable includes static and non-static fields (member variables), local vari-
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implement multiple roles. A SubjectLeaf, for example, is an object that is
a leaf and a subject meaning that it can be a part of a node-object and that
it can be viewed. Without the merger interface SubjectLeaf it would be
impossible to declare variables holding an implementation of both Subject

and Leaf.

Implementing the Merger Interfaces

Merging the role interfaces seems fairly straight-forward. But interfaces are
not very useful if there are no classes implementing them. I would like to
start with an explanation about how the merger interfaces are implemented
by classes called merger implementations. The implementation of the role
interfaces will be described shortly. For now it is sufficient to assume that
the role interfaces are implemented by classes called role implementations.

Figure 2.3 extends figure 2.2 with classes implementing the role and the
merger interfaces. The role implementations are merged using object com-
position and delegation. The class SubjectLeafImpl, for example, imple-
ments the SubjectLeaf interface by delegating Subject related messages to
Subject implementation and Leaf related messages Leaf implementation.
References to these role implementations are held in two private member
variables; that is, the role implementations are aggregated3 in the merger
implementation. Since aggregation is an example of object composition, it
is legitimate to say that the merger implementations are composed of role
implementations.

Generally speaking, a merger implementation instance aggregates one role
implementation instance for every role interface merged by its merger inter-
face. A merger implementation delegates incoming messages to these aggre-
gated role implementations. Note, that there can be any number of imple-
mentations for role and for merger interfaces. The aggregation and delegation
related functionality is identical in all merger implementations of a particular
merger interface. Thus, it makes sense to factor this functionality out and
encapsulate it in a base class - the merger base. There is one merger base
class per merger interface. All merger implementations of a particular merger
interface are sub-classes of this merger base. The merger bases in the exam-
ple presented here are SubjectLeafImpl, SubjectNodeImpl, ViewLeafImpl

ables and method arguments.
3There is no difference between aggregation and association in Java. This is because

every non-primitive variable in Java is a object reference. I prefer the term aggregation
because it implies ownership.
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Figure 2.3: Weaving the Observer and Composite pattern. Step 2: weaving
the role implementations
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and ViewNodeImpl.

Furthermore, the merger implementation base SubjectLeafImpl contains
the abstract factory methods createLeaf() and createSubject() which
have to be overridden by concrete sub-classes in order to instantiate Subject
and Leaf implementations of their choice. The merger base constructor in-
vokes these methods when it needs to create role implementations. Since the
merger base contains abstract methods it is itself an abstract class. Con-
sequently, there should to be at least one concrete merger implementation
extending the abstract merger base and providing bodies for the abstract
factory methods. Alternatively, the factory methods could be non-abstract
and return default role implementations.

Non-empty Merger Interfaces

In the example presented here, all merger interfaces are empty; that is, they
do not specify new methods. In some cases, it might be useful to have the
merger interfaces specify methods specific to the combination of the role
interfaces. These methods, I refer to them as merger methods, should not
be implemented by the merger base but by its concrete subclasses.

2.1.2 Object Schizophrenia

In the above section I outlined how merger interfaces are implemented by
merger implementations which are composed of role implementations. But
where do these role implementations come from? Naively speaking, they
are just instances of classes implementing the role interfaces. Unfortunately,
every delegation-based approach has to cope with object schizophrenia aka.
the lack of a common self: in a composite of many objects, each object has
its own this. A detailed description can be found in section 1.6.2.

The Self Reference

The solution introduced in the previous section deals with object schizophre-
nia by using Inner... interfaces. Inner-interfaces are extensions of role-
interfaces and declare a method called self(). The self() methods is
called by merger implementations immediately after the role implementa-
tions are created. self() sets the common self reference (Figure 2.4). Role
implementations implement this extension interface rather than the mere role
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interface. Whenever a role implementation needs to refer to “itself” it does
not use this but self which is the reference that was passed to the self()
method. The following sample code demonstrates that.

class SubjectLeafImpl implements SubjectLeaf {

InnerSubject subject;

InnerLeaf leaf;

SubjectLeafImpl() {

leaf = createLeaf()

leaf.self( this );

subject = createSubject()

subject.self( this );

}

void attach( View v ) {

subject.attach( this );

}

}

class SubjectImpl implements InnerSubject {

Subject self;

SubjectImpl() {

self( this );

}

void attach( View v ) {

...

v.setSubject( self ); // not ’this’ !

...

}

void self( Subject s ) {

self = s;

}

}

By calling self(this) on all aggregated role implementations a merger im-
plementation effectively notifies them that they are now part of a composite.
For example, attach() in SubjectImpl does not use this but rather self to
register itself with the view. The this reference points to the SubjectImpl

instance. The self reference points to the composite i.e. merger implemen-
tation.
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Figure 2.4: Delegation and the common self.

Overriding

This solution allows the merger implementation to override a method im-
plemented in the role implementation because every method invocation from
inside and outside the composite will be targeted to the common self, i.e. the
merger implementation. Without a common self, messages from inside the
composite, i.e. from the aggregated role-implementations, would be targeted
to the role-implementations themselves and not to the merger implementa-
tion. The merger implementation would have the opportunity to catch these
messages.

Specializing On Merger Interfaces

Another advantage of this solution is that Java’s instanceof operator and
type casts can be used to test whether an object is a single role implemen-
tation or a merger implementation with aggregated role implementations.

If, in the above example, SubjectImpl.attach() used this instead of self
for registering with the view, the view would receive a reference to a Subject
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instead of a reference to SubjectLeaf. Some views might want to specialize
in particular subjects like SubjectLeaf or SubjectNode because nodes and
leafs might have different representations. The view could use the following
code fragment to test whether its subject is a sole Subject implementation,
a SubjectLeaf merger implementation or a SubjectNode merger implemen-
tation.

class ViewImpl implements InnerView {

...

void setSubject( Subject s ) {

if( s instanceof SubjectLeaf ) {

// code specific to SubjectLeaf objects

} else if( s instanceof SubjectNode ) {

// code specific to SubjectNode objects

} else {

// code specific to sole Subject objects

}

}

...

}

Conclusions

The solution presented here can also be referred to as internal delegation.
This is because the delegation happens in the merger implementation. It
supports exchangeable role and merger implementations and it deals with
object schizophrenia by establishing a common self across the objects in a
composite.

2.1.3 External Delegation

Another technique which I want to cover briefly is what I call external del-
egation. A traditional delegator implements the sum of the interfaces of its
delegatees. Consequently, the delegator has to implement every method re-
quired by each delegatee interface. All these methods simply forward the
call to a delegatee. The delegator essentially exports all its delegatees’ inter-
faces. The internal delegation solution presented in section 2.1.1 is such a
traditional technique. It has the following disadvantages:
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• Writing forwarder methods is tedious and error-prone. It is a typical
candidate for a task that should be automated.

• A change to an interface does not only require an update of all its direct
implementations but also involves changes to all delegators which use
these implementations.

• Delegation doesn’t scale well when the number of delegators is small in
relation to the number of interfaces. The amount of forwarding code
will be much bigger than the amount of code needed for the actual
implementations.

The alternative technique presented here removes the burden of forwarding
from the delegator.

public interface Leaf {

public interface Impl {

public Node getParent();

}

public Impl leaf();

public abstract class ImplBase implements Impl {

protected final Leaf self;

public ImplBase( Leaf self ) {

this.self = self;

}

}

}

The outer interfaces Leaf contains

• an inner interface Leaf.Impl,

• a single method returning an implementation of Leaf.Impl and

• a helper class that Leaf.Impl implementations should inherit.

Merger implementations, i.e. delegators, realize (implement) their delegatees’
outer interfaces. Role implementations, i.e. delegatees, each realize one
particular inner interface. Unlike traditional delegators, an external delegator
only needs to contain one method and one field for each outer interface it
implements.
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public class SubjectLeaf implements Subject, Leaf {

private Subject.Impl subject;

public final Subject.Impl subject( ) { return subject; }

private Leaf.Impl leaf;

public final Leaf.Impl leaf( ) { return leaf; }

}

Clients which need to send a message to a delegator instance use this method
to acquire the inner interface implementation to which they then send the
message:

subjectLeaf.leaf().setParent( ... );

subjectLeaf.subject().attach( ... );

This technique is called external delegation, because the forwarding hap-
pens in the client instead of the delegator. External delegation has certain
advantages: it

• does not require programmers to write forwarder methods,

• scales better, because there are no forwarders, and

• keeps the name-space clean because it bundles related names as mem-
bers of the outer interface.

But there are also drawbacks: external delegation

• obfuscates the client code,

• becomes more complicated when object initialization and inheritance
between role implementations are taken into account, and

• requires a separate outer interface implementation for each free-stan-
ding role implementation.

Like its traditional form, external delegation requires a mechanism providing
a common self. To do so, a similar technique to the one introduced on page 39
can be used.
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2.1.4 Conclusions

I have shown that delegation can be used to weave design patterns in Java.
But it has to be “designed-in”, a term coined by [Szy99]. Whenever a pro-
gramming language does not directly support a feature (pattern weaving,
in this case) as a language idiom it has to be implemented manually using
existing idioms. This complicates the design of frameworks and burdens the
client programmer as well as the framework author with tasks that should be
done automatically. Inheritance is one example of the automated forwarding
of messages: the method lookup of object-oriented languages dispatches mes-
sages automatically and transparently to the right class in the inheritance
chain of an object. Delegation is an alternative technique to inheritance and
it may be used to generate more reusable software. But it does so at the cost
of extra work on the programmer’s part.

Ideally, a programming language should directly support delegation as one
of its idioms. Self, introduced in section 1.6 is such a language. The amount
of legacy code written in current languages like Java and C++, will always
present an obstacle for alternative languages to become accepted. What is
needed is a compromise between native language support of delegation and
its manual implementation. The resulting solution should (1) automatically
employ delegation and (2) provide a transparent solution for the common
self.

2.2 Generative Programming

The previous section shows that the design of application frameworks involves
the process of pattern weaving and how pattern weaving can be achieved
using delegation. In this section I will demonstrate that the creation and
weaving of design patterns are just incarnations of more general design ac-
tivities called feature modelling and feature composition. Because feature
modelling is a contribution of domain engineering in general and generative
programming in particular, both are also covered in this section. The text in
this section is a brief (and necessarily incomplete) introduction to Generative
Programming based on the material found in [CE00].
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2.2.1 Domain Engineering

Feature modelling is a discipline of domain engineering. The basic idea be-
hind domain engineering is design for reuse. The traditional object-oriented
approach assumes that reusability is simply a byproduct of the object-ori-
ented paradigm; that is, if software is object-oriented, it will automatically
be reusable. Language idioms like subtype polymorphism (inheritance) and
ad-hoc polymorphism (method overloading) are supposed to guarantee fu-
ture extendibility. Although, it is true that software can be extended using
these mechanisms, extendibility is not identical to reuse. Extending software
makes it more complex. The complexity grows until it reaches the limit,
where it is impossible to maintain, understand and extend the software sys-
tem anymore.

This situation can only be improved by designing software for reuse. Appli-
cation frameworks are a well known incarnation of this idea. Their design is
targeted towards a family of systems or applications. This family of systems
is also referred to as the domain. Domain engineering denotes the process of
“collecting, organizing and storing past experience in building systems . . . in
the form of reusable assets . . . , as well as providing an adequate means for
reusing these assets . . . when building new systems.” [CE00]

According to the above definition, domain engineering consists of three pha-
ses: (1) domain analysis, (2) domain design and (3) domain implementation.
The purpose of the first phase is to identify the set of application or systems
(scoping) and to collect information about this set of systems from customers,
experts and other developers. The second phase uses the domain model
from the first phase to develop a software architecture shared by all systems
in the domain. It identifies the building blocks of the systems as well as
their interactions and most importantly their variation across the family of
systems.

Usually the building blocks of software systems are components or and subsys-

tems. It is not sufficient to think of subsystems as being made up of subsystems

and subsystems as being made of components. In fact, the component view and

the subsystem view are interleaved: components belong to systems and are made

up of other sub-components. Each of the sub-components belongs to a sub-system

and each sub-system realizes a particular aspect of the component.

The result of the domain analysis and domain design is a feature model which
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is a concise and explicit representation of the variability found in the software
systems of the domain. The process of domain analysis and design can be
summarized as follows.

1. Identify the family of software systems to be developed.

2. Gather information about this system. Analyze existing systems of
that family.

3. Identify and name the concepts in these systems.

4. Identify the properties (features) of instances of these concepts in ex-
isting (this is a analytical process) or hypothetical (this is a creative
process).

5. Identify the variability of these features.

6. Select a architecture suitable to represent and combine the features.

The objective of this thesis is the design and implementation of a framework
for GUI applications. In chapter 1 several GUI application frameworks were
introduced and analyzed. Consequently, the research done for the first chap-
ter is represented by phase 1 and 2 in the above list. Phase 6 is subject of
section 2.6 in this chapter. The artifacts of the remaining phases are covered
in chapter 3.

The term variability denotes a property’s potential to change from one system
of a family to the next. Successfully predicting the variability among the
systems of one family is the major goal in feature modelling.

2.2.2 Feature Modelling

According to [CE00], a feature is an “important property of a concept in-
stance”. A feature model represents the features of a concept as well as their
variability. Thus, a feature model represents the intention of a concept. The
set of instances described by a feature model is known as the extension of
that model.

Feature diagrams

Feature models are visualized in feature diagrams. There are six elementary
types of features:
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• mandatory features (figure 2.5a),

• optional features (figure 2.5b),

• alternative features (figure 2.5c),

• optional alternative features (figure 2.5d),

• Or features (figure 2.5e) and

• optional or features (figure 2.5f).

The features in a feature diagram are represented by nodes in a tree. The
root node of the tree represents the concept node. The concept node is
connected to its feature nodes through edges. Feature nodes may have sub-
feature nodes which are also connected to their parent feature node through
edges. Figure 2.5 shows the feature diagram notations for the above types of
features.

Figure 2.5: The diagram notation of different feature types: a) mandatory
features, b) optional features, c) alternative features, d) optional alternative
features, e) Or features and f) optional Or features

A mandatory feature is included in the concept instance if its parent feature
is included in the concept instance. A optional feature node may be included
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in the concept instance if its parent is included. If the parent is not included,
the optional feature is not included either. If a parent feature with alternative
sub-features is included in the concept instance, then exactly one of its sub-
features is included. If a parent feature with Or sub-features is included
in the concept instance, then any non-empty sub-set of its sub-features is
included. Alternative and Or features can be optional meaning that they
can be omitted from the concept instance. A feature can also have multiple
mandatory sets of alternative and or features.

Variability

Features diagrams describe the variability of features. The variability in
feature models is represented by the alternative, optional and or feature
types. Invariant features are called common features. A features is common
if it is always included in the concept instance. All common features are
mandatory features, but not all mandatory features are common features.
This is because their parent feature may not be mandatory and thus not be
included in concept instance. Features with variable sub-features are referred
to as variation points.

The variability in feature models requires appropriate variability mechanisms
in order to be implemented. Variability mechanisms are also referred to as
composition techniques. One of them is single inheritance. Figure shows the
implementation of a feature diagram using single inheritance.

�
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Figure 2.6: Using single inheritance to implement a feature model.

Evidently, the implementation of the sub-features S21 and S22 has to be dupli-
cated. Generally speaking, when implementing feature diagrams using single
inheritance, duplication can only be avoided if the diagram does not contain
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any simultaneous, non-singular variation points. Singular and simultaneous
variation-points are defined as follows: if a (non-)singular variation point is
included in the concept instance, then at most one (more than one) of its
sub-features is (are) included. Two or more variation-points are simultaneous
if and only if they can be included in the same concept instance and neither
is a direct or indirect parent of the others.

If a feature diagram contains simultaneous, non-singular variation points,
duplication can only be avoided by using other composition mechanisms
like delegation (see section 2.1), parameterized inheritance (see section 2.3),
aspect-oriented programming (see section 2.5) and multiple inheritance (see
section 2.6).

2.2.3 Domain specific languages

Domain specific languages (DSL) play a major role in the process of genera-
tive programming. Generative programming is an adapted variant of domain
engineering which focuses on the automated generation of systems belonging
to a particular domain. It is done by generators which are controlled by
configuration DSLs. Generally speaking, a DSL “is a specialized, problem-
oriented language” [CE00]. It is the contrary of a programming language
because it is specific to certain family of systems.

I find the term domain specific language rather vague. In [CE00] TeX and
SQL are given as examples for DSLs. Although I understand that both lan-
guages are special, problem-oriented languages, I do not see their relationship
to domain engineering. Configuration DSL’s, on the other hand, are related
to domain engineering. They play an central role in generative program-
ming. A configuration DSL is used to specify the arrangement of a system’s
components, i.e. the systems configuration.

“A configuration DSL allows you to specify a concrete instance of
a concept, for example, data structure, algorithm, object, and so
on. Thus it defines a family of artifacts, just as a feature model
does. Indeed, a configuration DSL can be represented as a feature
model, and we derive it from the Domain Analysis feature model
of a concept by tuning it to the needs of the reuser.” [CE00]

Interestingly, a DSLs does not always have to be created from scratch. There
is a special type of DSL called embedded DSL, which makes use of a program-
ming language’s built-in metaprogramming capabilities. For example, the
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GenVoca (see section 2.3.5) architecture employs C++ static metaprogram-
ming (i.e. templates) to define the composition of systems and components.
In GenVoca, the template type expressions (template instantiations and spe-
cialization expressions) are the words of the embedded configuration DSL.4

2.2.4 Feature Modeling vs. Design Patterns

Design patterns are instances of architectural concepts. Why are they only
instances of concepts rather than actual concepts? Patterns are concept
instances because they are specific to two object-oriented idioms: class com-
position (interface and implementation inheritance) and object composition
(aggregation and association).

The standard text on design patterns [GHJV95] describes each pattern in
a consistent format. The description of a pattern starts by explaining its
intent, motivation and applicability. This is followed by the structure, the
participants, collaborations, implementation and so on. The intent, motiva-
tion and applicability are indeed the concept. Its structure is described using
object-oriented modelling methods and its implementation is demonstrated
using object-oriented languages. This makes the actual pattern a concept
instance. For example, the patterns Strategy and Template Method are in-
stances of the concept of varying an algorithm within a family of algorithms.
The Observer pattern is an instance of the concept of establishing consistency
between representations.

Feature modelling defines the term feature as a property of a concept in-
stance. Consequently, if design patterns are concept instances, they must
also have properties, i.e. features. The mandatory features of design pat-
terns are the collaborations between objects. The roles are alternative or
optional sub-features of collaborations. For example, the Observer pattern
has essentially two collaborations: registration and notification. During reg-
istration, the observers (aka views) inform the subject (model) that they
want to be consistent with the subject. During notification, one observer
modifies the subject and asks it to inform the other observers about this
change (see figure 2.7).

Each collaboration defines certain roles. Each object can incorporate multiple

4Generative programming distinguishes between configuration DSL and implementa-
tion components configuration languages (ICCL). A DSL is language in the problem space
and a ICCL is a language in the solution space. The template type expressions are actually
the words of a embedded ICCL rather than a DSL because they describe the configuration
of implementation components.
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Figure 2.7: A feature diagram of the observer pattern.

roles — one role per collaboration it is involved in. This means that pattern
weaving is just a specialized form of feature composition in which objects
are composed of roles. Analogously, objects can be seen as components and
roles as aspects of components.

Lately, the object-oriented community discovered, that reuse is not just a
automatic side-effect of the object oriented design and implementation of
systems. Consequently, the term application framework was coined. Appli-
cation frameworks are designed to ease and accelerate the development of ap-
plications. Applications are software systems. The designer of an application
framework focuses on a family of systems. This is were the object-oriented
paradigm and domain engineering converge. More reusable software can be
created by replacing the OOA/D methods with the methods of domain en-
gineering. But the object-oriented paradigm does not need to be thrown
away completely: the idioms of OO-languages can still be used to adequately
implement the variation points in domain models.
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2.3 C++: Static Metaprogramming

Selecting a composition mechanism or even creating a new one is the key
to a suitable implementation of the variability present in a family of sys-
tems. Section 2.1 examines such a dynamic composition mechanism. It also
shows that this purely object-oriented approach is not very suitable for the
development of larger systems and even families of systems.

Static metaprogramming is another variability mechanism which is why I
want to include it in this chapter. Although static metaprogramming cannot
be done in the Java language5, static metaprogramming in C++ can give
interesting insights. One of them is that feature composition should be done
statically, i.e. at compile time. A static composition mechanism for Java will
be introduced at the end this chapter. In the beginning of this section I will
evaluate static-metaprogramming from a perspective quite different to the
perspective of the previous section. At the end of this section (in 2.3.5), I
will show how static metaprogramming can be used to implement the feature
models introduced in the previous section.

2.3.1 The Storage-Space vs. Running-Time Tradeoff

Writing a computer program is often about finding a good trade-off between
storage-space and running-time, i.e. between storing state or computing
it. State can be stored in the computer’s RAM and disk-drives or it can
be computed from other state by the computer’s processing units. Many
algorithmic optimization techniques involve the transition from computed to
stored state.

For example, a binary relation can be implemented as linked list of key-value pairs.
With this implementation the lookup (testing whether the relation is defined for
a certain key) is O(n). A hash-table based implementation has a slightly better
O(max(m, n/B) wherem is the average number of keys per value, n the number of
pairs (elements in the relation) and B is the bucket size (average number of values
per hashed key). But the hash-table implementation uses more memory space than
the list implementation. The characteristic vector implementation which uses the

5Java’s Reflection API supports dynamic metaprogramming with one limitation: it is
read-only; that is, it can only be used to have a program examine itself at runtime. It can
not be used to have the running program modify itself. Static metaprogramming in Java
is currently impossible because Java simply does not have templates or macros. There are
Java source code preprocessors available but these are not part of the language standard.
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keys to index an array of values has a lookup of O(n) but needs even more memory
because many array items are unused.6

There are other optimization techniques which do not trade memory space for

running time. If the linked list implementation ensures that the pairs in the list

are sorted in the order of their keys, the lookup can be done using a binary search

which has O(log n). Keeping the list ordered takes additional time during the

operations which insert pairs into the relation and remove pairs from it. Given a

certain distribution among the add, remove and lookup operations, this extra time

is more than amortized by the speedup of the lookup operation.

In the field of language theory and compiler construction the state to be
computed and stored is itself a program. The compiler vs. interpreter dis-
cussion is basically an example of the space-time tradeoff. A compiler is a
program that computes the machine-readable representation of a program
based on its human-readable form. The machine-readable program can then
be stored, eliminating the need to recompute it every time the program is
run. An interpreter, on the other hand, does this computation ’on-the-fly’
while the program is running.

2.3.2 Templates

The above mentioned space-time tradeoff in the field of compiler construction
has many names: static versus dynamic (binding, typing, optimization), early
versus late (binding) or eager versus lazy (evaluation).

C++ templates are an example of a concept which pre-computes state and
then stores it. A template is essentially a meta-program; that is, a program
about a program. The C++ compiler interprets the meta-program and com-
putes the output program. That’s why this technique is also referred to
as static meta-programming. It is called “static” because it is done before
the runtime of the actual program. [CE00], inspired by [Vel96], shows how
C++ templates can be used to have the compiler compute state that is usu-
ally computed by the compilers output program. This technique can yield
programs which execute faster because some of their intermediate state has
already been pre-computed.

6except when the number of elements in the relation is close to the cardinality of the
key type
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There is an interesting parallel between static meta-programming and the abil-

ity of most interpreters to evaluate a string which is computed at runtime and

which contains an expression in the interpreter’s source language. The Perl lan-

guage, for example, has the eval construct which can be used to evaluate Perl-code

determined at the runtime of a Perl-program. The Perl interpreter employs a op-

timization technique common to interpreters: it pre-compiles the input script into

a more efficient binary representation before executing it. Consequently, the eval

function can be used to evaluate sub-routine definitions. The result of eval on

text containing a sub-routine definition is not the result of the subroutine’s body.

Instead it is a reference to the sub-routine,7 which can then be invoked at the same

speed as that of a statically defined sub-routine. This essentially makes every Perl

script a potential meta-program because it has the ability to generate and evaluate

another Perl-program. Often, code consisting of many conditionals and switch-like

constructs can be made more efficient and generic using eval.

The focus of this paper is software reuse. In this section I want to introduce
software libraries which have successfully used C++ templates to achieve
reuse. It would therefore be useful to have a closer look at C++ templates.

Templates, when examined from the software reuse angle, can be seen as
parameterizable software building blocks, i.e. components.8 This is the
polymorphic aspect of templates as opposed to the state-computational as-
pect mentioned earlier. Templates are said to provide static polymorphism.
Inheritance, on the other hand, is an example of dynamic polymorphism:
a sub-class instance can always be used in place of a super-class instance
and the distinction between them is made when a method is invoked, i.e.
at runtime. Inheritance and templates are competing techniques regarding
polymorphism (see also [BN96]). In the first chapter I have shown that in-
heritance is not satisfactory in many ways. Thus, templates are interesting
because they may lead to a better method of achieving reuse in Java as well.

To be reusable the building blocks have to be generic, that is, they have
to be variable regarding some of their features and properties. The more
explicit a software building block defines its properties, the more it will limit
the possibility of reusing it. To make the template’s properties variable
the template will have to be parameterized ; that is, all variable properties
become parameters of the template. The process during which the C++

7The term ‘sub-routine reference’ is Perl slang for what the functional programming
community refers to as closures.

8In this chapter the term component is used differently than in the first chapter where
it meant widget. For a precise definition refer to the terminology in the appendix.
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compiler automatically makes all of the template’s properties explicit (i.e.
substitutes the template’s parameters) is called template instantiation. The
template parameters are most likely types.9 Types in C++ are used in many
places: classes itself are types, class members (fields and methods) are typed
and classes can inherit interface and implementation from other classes by
declaring their parent class type. C++ templates can be used to abstract
from the concrete types in all of the above-mentioned uses. This has the
following consequences:

• Classes and functions can be templates themselves.

• The members of a class-template can be declared using template pa-
rameters instead of concrete types.

• A function-template’s return and argument types can also be turned
into template parameters.

2.3.3 Parameterized Inheritance

Another very important consequence is that a class-template’s parent class
can be a template parameter as well. This technique is also referred to as
parameterized inheritance and it shows that templates and inheritance can
be used in combination rather than alternatively.

// template definition

template<class A>

class B : public A {

...

};

...

// template instantiations

B<X> *bx = new B<X>;

B<Y> *by = new B<Y>;

A programmer writing a class that is parameterized by its parent (class B in
the above example) cannot make assumptions about either implementation
or interface of the parent class (A) because it is simply undefined at the
time the template is written and compiled. Thus, the relationship between a
parameterized sub-class and its parent class is less intimate than with explicit

9C++ template parameters can actually also be non-types like values or even references.
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inheritance. Consequently, parameterized inheritance is a good way to inherit
implementation without revealing details about it, that is, to achieve black-
box reuse. It would sometimes be useful to require certain properties of the
parent class parameter, e.g. its interface. The following example illustrates a
hypothetical language extension in which the template parameter A can only
be substituted with a class that extends class X (if X was an abstract class
one would say that A is required to implement the interface X).

// not C++ !

template<class A : X>

class B : public A {

...

};

...

B<X> *bx = new B<X>;

B<Y> *by = new B<Y>; // illegal, unless Y is a sub-class of X

Constraining the template parameters is also known as bounded polymor-
phism. Unfortunately, C++ does not have this feature. GJ, an approved
addition to the Java language standard (see 2.4), allows for this kind of
constrained template parameterization but does not provide parameterized
inheritance, and most likely never will because of the way GJ is implemented.

As mentioned before, parameterized inheritance merges two kinds of poly-
morphism: static and dynamic polymorphism. To be more precise, the in-
stance (i.e. a concrete object) of a class template instance (i.e. a concrete
class) with a parameterized parent class will be subject of dynamic method
lookup as well.

template<class A>

class B : public A { public:

virtual void foo() { A::foo(); }

};

class X { public:

virtual void foo() { printf( "X::foo\n" ); }

};

class Y { public:

virtual void foo() { printf( "Y::foo\n" ); }

};
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void main() {

B<X> *bx = new B<X>;

B<Y> *by = new B<Y>;

bx->foo();

by->foo();

}

The class template B in the above example overrides the foo() method.
Thus, B assumes that its base class has a virtual foo() method. Fortunately,
both instantiations of B satisfy this assumption. If, for example, Y didn’t
have a foo() method, the compiler would fail when compiling the B<Y>

instantiation.

The above example shows that I have to adjust my statement that C++
does not provide bounded static polymorphism. In fact, the assumptions
made in the class template essentially constrain its instantiations. The only
drawback of this is that the constraints are obscure, i.e. not obvious to the
programmer using the template.

Another statement which has to be adjusted is the one saying that C++ tem-
plates are better suited to black-box reuse. The term black-box implies that
to be reused a component does not have to reveal implementation details.
Because parameterized inheritance is still inheritance, the template author
can make any assumptions about the inherited class. The programmer can,
for example, assume that the parent class defines a particular member. The
compiler does not enforce the hiding of implementation details. In fact,
the compiler cannot verify these assumptions until the template is fully in-
stantiated,10 which means that templates delay the detection of unjustified
assumptions and thus weaken type safety. The point here is that a reason-
able template author will not burden the template user with justification
of assumptions. Instead, a reasonable template author will not make any
assumptions at all. As with explicit inheritance, black-box reuse must be
achieved with programming discipline rather than support by the compiler.
But unlike inheritance, templates do not encourage the programmer to make
assumptions about a parent class.

Parameterized inheritance can provide a useful and safer alternative to mul-
tiple inheritance. Multiple inheritance introduces hard-to-track ambiguities

10The C++ standard requires that template instantiation be lazy; that is, the substi-
tution of template parameters must be delayed until an instruction is hit which allocates
storage space for a template instance’s object or which accesses a member of the template
instance’s object. If Y didn’t have foo() and there was no allocation or member access
on the by pointer in main() the compiler would not fail.



2.3. C++: STATIC METAPROGRAMMING 59

and every good text book on C++ contains a warning to use it carefully.
The following example shows code that uses parameterized inheritance:

template<class M> class A : public M {

public: void a() { printf("A::a()\n"); }

};

template<class M> class B : public M {

public: void b() { printf("B::b()\n"); }

};

template<class M> class C : public M {

public: void c() { printf("C::c()\n"); }

};

class D { public:

void d() { printf("D::d()\n"); }

};

void main() {

A<B<D> > *abd = new A<B<D> >;

B<C<A<D > > > *bcad = new B<C<A<D> > >;

abd->a(); abd->b(); abd->d();

B< A< D > > *bad = *abd; // fails

}

This is semantically equivalent code using multiple inheritance:

class A { public:

void a() { printf("A::a()\n"); }

};

class B { public:

void b() { printf("B::b()\n"); }

};

class C { public:

void c() { printf("C::c()\n"); }

};

class D { public:

void d() { printf("D::d()\n"); }

};

class ABD : public A, public B, public D {};

class BCAD : public B, public C, public A, public D {};

void main() {

ABD *abd = new ABD;



60 CHAPTER 2. ALTERNATIVE TECHNIQUES

BCAD *bcad = new BCAD;

abd->a(); abd->b(); abd->d();

}

The pointer assignment in main() of the first example fails. This is because
the two compositions A<B<D>> and B<A<D>> have the same interface but are
different types. Sometimes this is intentional: if A, B or C contained virtual
methods having the same signature (method overriding) and the activation
order of those methods was relevant the composition order could be used to
define the activation order. However, this feature can cause trouble in cases
where there is no semantic difference between the two compositions.

2.3.4 Code-Bloat

Another issue that deserves attention is code-bloat. Every instantiation of
a template will effectively generate a duplicate of the template body. This
seems especially unnecessary if the only parameter of a class template is
its super class. Code-bloat is often used as an argument against templates.
In real-world systems the impact of code-bloat might not be as dramatic.
Some of the preconceptions regarding the code-bloat caused by parameterized
inheritance are:

• Multiple inheritance is a better alternative because it does not cause
code-bloat. This is not always true. Consider the above examples which
demonstrated the equivalence between multiple and parametric inheri-
tance. If multiple inheritance is used to compose components a dummy
class will be needed for each composition (classes ABD and BCAD in the
above example).

• Duplication is bad because it increases the size of a program. It is true
that duplication leads to increased code size. But when the duplicated
classes are small the increase is negligible. The key to small classes
is a good design consisting of reusable components. This good design
is exactly what parameterized inheritance is a vehicle for. The size
reduction achieved by a modern design technique may far outweigh
the increase caused by code duplication. Furthermore, there are well
established and accepted optimization techniques which cause duplica-
tion too. Examples are method-inlining or loop-unrolling.

• Explicit inheritance does not cause code-bloat. This is only true for lan-
guages without multiple inheritance. The base-classes of single-rooted
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class hierarchies often becomes overweight. This is because a single-
inheriting class hierarchy is just a one-dimensional projection of the
more complex real-world. The effect is that features which belong to-
gether in a different dimension become scattered across the inheritance
hierarchy (see section 2.2). The only option is to place such features
at the root of the inheritance tree. A good example for an overweight
base-class is java.awt.Component. Systems written in languages of-
fering multiple inheritance may not suffer from overweight base-classes
but their inheritance graph may become unmanageably complex.

Figure 2.8 illustrates the observation made in the last point. The lower left
and lower right picture show two single-inheritance alternatives to the de-
sign shown in the upper picture. The Shareholder functionality can either
be duplicated in the Hired and Long-Term classes or added to the base class
of the Employee dimension. Both alternatives have disadvantages. Duplica-
tion keeps the base-class and its descendants clean but is hard to maintain.
Adding functionality to the base-class can make it overweight (especially if
more than two dimensions occur) and pollutes its descendants with unneeded
or colliding functionality.

The most important drawback of C++ templates is their limited deployment.
Software components are usually either deployed in binary form or as source
code. There are several advantages in the binary deployment of components.
It provides11

• protection of intellectual property,

• deployment without prior compilation and

• standardized mechanisms for declaring a component’s interface.

Currently, C++ templates have to be distributed as source code. This is
where Java comes in. Because it has a well standardized and simple interme-
diate binary format for its compiler output, post-compilation composition of
classes through inheritance becomes possible. I have written a prototypical
tool which implements this and which will be introduced in section 2.6.

Nevertheless, the advantages of static-metaprogramming in C++ as provided
by templates are numerous. For scientific computing (number-crunching) for

11Of course, this list could be considered biased. There are definitely pros and cons for
each point but this is beyond the scope of this paper.
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Figure 2.8: The overweight base-class problem.
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example, template-based approaches to matrix-computation libraries (tradi-
tionally a speciality of Fortran) can yield fast and efficient programs. The
other standard application of templates are container class libraries.

2.3.5 The GenVoca Architecture

So far, I have evaluated static-metaprogramming in C++ from a more tra-
ditional perspective. This section shows how the GenVoca architecture uses
static-metaprogramming to implement feature models. Features models were
introduced in section 2.2 as an artifact of the Generative Programming de-
velopment process, an adapted variant of domain engineering.

Consider the feature model in figure 2.9 which shows an example feature
diagram containing the concept node C and its sub-features F1, F2 and F3.
Each of the sub-features has sub-features: S11, S21, S22 and so on. F3 is op-
tional and its sub-features are alternative whereas F3 has Or sub-features (see
section 2.2.2). I will use this example to demonstrate how a GenVoca archi-
tecture can be derived from a feature model and how it can be implemented
using static meta-programming.

Figure 2.9: An example feature diagram.

The procedure which converts the feature diagram into a GenVoca architec-
ture consists of the following steps:

1. Determine the implementation components.

2. Find the dependencies between implementation components.
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3. Arrange the components in layers.

4. Write the GenVoca grammar.

5. Implement the GenVoca grammar using class templates and parame-
terized inheritance.

From Feature Models to Implementation Components

The foundation of the first step is the feature diagram. Each variation-
point in the diagram becomes an implementation component. There is an
implementation component for each sub-feature, too. Figure 2.10 shows the
implementation components of the example.

Figure 2.10: Implementation components

Finding the Component Dependencies

Components can depend on each other; that is, one component needs to
access another component. For example, section 2.2.4 contains the feature
model of the Observer pattern (see figure 2.7). It is obvious that the Subject
feature depends on the Registrar feature because the subject needs to about
know its observers in order to notify them. The Observer feature depends on
the Registrant feature in a similar way. Unfortunately, neither dependency
is expressed in the feature diagram.

Generally speaking, dependencies between implementation components can-
not be made explicit using feature diagrams. Instead, they are a separate part
of the feature model and they result from knowledge about the domain. The
only way to express component dependencies formally, is to use constraint
languages like UML’s object constraint language (OCL). Feature diagrams
would be much more useful if they expressed the component dependencies
explicitly.
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To continue this section’s example, I assume component dependencies as
shown in figure 2.11. Component F1 is independent, F2 depends on F1 and
F3 depends on F2.

Figure 2.11: Component dependencies

The GenVoca Layers

In more complex feature models, there are many components between which
no dependency exists. These sets of independent components form compo-
nent categories. Consequently, component dependencies can be reduced to
inter-category dependencies. This section’s example is degenerated in that
each component forms a category of its own.

Each component category becomes a layer in the GenVoca architecture. The
layers are ordered according to their dependencies. In this section’s example,
the category F1 does not depend on any other category. Hence, F1 forms the
bottom layer. The other layers are stacked according to their dependencies.
The component category of the concept node becomes the topmost layer
(figure 2.12).

Figure 2.12: GenVoca layers

The comma operator has “or” semantics; that is, any non-empty subset of
the set of components separated by commas can be included. The vertical
bar operator (|) has “xor” semantics: only one component out of the set of
components separated by | can be included.

The GenVoca Grammar

The GenVoca grammar defines a formal language (set of words) on the set of
components plus the set ’]’, ’[’ . Each word in the language represents
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a possible (valid) component configuration or, using feature modelling termi-
nology, a concept instance. The GenVoca grammar can be derived from the
layer representation by creating one rule per layer. Each rule has as many
| alternatives as there are components in the layer.12

C → F2 | F3 (2.1)

F3 → S31[F2] | S32[F2] | S33[F2] (2.2)

F2 → S21[F2|F1] | S22[F2|F1] | S23[F2|F1] (2.3)

F1 → S11 (2.4)

Examples of valid component configurations (i.e. valid words) are c1 =
S33[S22[S11]] and c2 = S31[S23[S21[S11]]] and c3 = S23[S11]. The optional-
ity of F3 is denoted in rule (2.1): a word can be produced by using the
corresponding rules for either F2 or F3; that is, F3’s layer can be omitted.
The Or-semantics of F2’s sub-features is denoted in rule (2.3): it is recursive.

Implementing the GenVoca Grammar

The GenVoca grammar can be implemented using parameterized inheritance.
The components are implemented as class-templates. Each class-template is
parameterized by its parent class. Parameterized inheritance is subject of
section section 2.3 which is why a detailed explanation is not necessary at
this point.

The following C++ code shows the class-templates which make up the im-
plementation of this section’s example.

// layer F1

class S11 {

...

};

// layer F2

template<class PARENT>

class S21 : public PARENT {

...

};

template<class PARENT>

class S22 : public PARENT {

...

};

template<class PARENT>

class S23 : public PARENT {

...

};

// layer F3

12The square brackets do not denote optional terms as in EBNF. Instead, they are part
of the alphabet. The | operator denotes alternative terms as in BNF and its scope extends
to the end of the rule or to the next square bracket.
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template<class PARENT>

class S31 : public PARENT {

...

};

template<class PARENT>

class S32 : public PARENT {

...

};

template<class PARENT>

class S33 : public PARENT {

...

};

// instantiations

typedef S33<S22<S11>> c1;

typedef S31<S23<S21<S11>>> c2;

typedef S23<S11> c3;

The template instantiations at the end of the above sample represent valid
component configurations, i.e. concept instances. Each configuration creates
an inheritance chain of concrete classes. A concrete class is created by instan-
tiating a template in any of the layers. Instantiating a template in a upper
layer creates a class which is derived from a class created by instantiating a
lower layer template. Thus, the GenVoca architecture employs configurable
class hierarchies.

The above sample code is a very reduced and simplified version of the actual
implementation. The difference to real-world examples lies in the lack of any
functionality in this example and in fact that an actual implementation of
GenVoca using static meta-programming becomes rather complicated. This
is mainly due to the fact that C++ templates are more of a language add-on
rather than a well integrated language idiom. An in-depth study of Gen-
Voca including real-world examples and their implementation can be found
in [CE00].

The Or-Anomaly

The recursiveness of rule (2.3) in the example grammar can be used to pro-
duce infinitely long component configurations. This is a violation of the
original feature model. It violates the Or-semantics of F2’s sub-features (see
page 47): if the parent feature of Or’ed sub-features is included in the con-
cept instance, then any non-empty subset of sub-features is included. Sets
contain an element once but the grammar rule (2.3) can be used to produce
words like: S31[S21[S21[S21[. . . S21[S11] . . .]]]] in which S21 occurs more than
once.

The grammar can be rewritten in order to correctly represent the Or–seman-
tics of F2. Replacing rule (2.3) with the following rules yields the correct
behaviour.
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F2 → S21[F
23
2 |F1] | S22[F

13
2 |F1] | S23[F

12
2 |F1] (2.5)

F 23
2 → S22[S23[F1]|F1] | S23[S22[F1]|F1] (2.6)

F 13
2 → S21[S23[F1]|F1] | S23[S21[F1]|F1] (2.7)

F 12
2 → S21[S22[F1]|F1] | S22[S21[F1]|F1] (2.8)

Although the above grammar is formally correct, its complexity makes it
difficult to read, comprehend and implement. Therefore, most GenVoca ar-
chitectures use the simpler but incorrect grammar and rely on (1) the user
or (2) generators to ensure the validity of the configurations. Usually, it is
sufficient to trust the user (client programmer) in not creating invalid con-
figurations like S31<S21<S21<S21<S21<S11>>>>>.

Alternatively, generators can be used. A generator is an even more advanced
use of static meta-programming. It is a meta-program which is executed
by the compiler. It has a loop-construct and a conditional just like normal
programs. [CE00] shows how a static C++ meta-program can be used to
have the compiler parse a configuration DSL (see section 2.2.3) and generate
a valid configuration.

Conclusions

The major benefits in using a GenVoca architecture are flexibility and ef-
ficiency. GenVoca is flexible since it allows for a large number of different
component configurations. Despite this a GenVoca architecture yields highly
effective code. Traditional object-oriented programs spend much of their run-
time by repeatedly performing redundant activity like virtual method lookup.
GenVoca moves much of this activity to compile time.

Obviously, GenVoca’s flexibility is the foundation of reusability. Further-
more, GenVoca allows the client programmer to add her own application-
specific layers. This is because it is the client programmer who creates the
configurations. In traditional object-oriented designs, the configurations are
“hardwired” into the class hierarchy.

The disadvantage of GenVoca is the complexity of its implementation. Tem-
plates are difficult to comprehend for unexperienced programmers as is the
whole concept of static-metaprogramming. Furthermore, a GenVoca archi-
tecture introduces subtle dependencies between class templates in different
layers. I have never implemented a GenVoca architecture myself, but I sus-
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pect that it is not easy to interpret the error messages emitted by a C++
compiler when it encounters an invalid component configuration.

2.4 GJ: Bounded Parametric Polymorphism

This section is a compact introduction into Generic Java (GJ). GJ is a source
and binary compatible Java compiler which adds one idiom: parametric poly-
morphism. The name Generic Java results from generics or generic types —
a synonym for parametric types. Generics are not another variability mech-
anism, an important subject of this thesis. The reason for including GJ in
this text is that GJ, unlike C++, supports bounded type parameters. GJ is
a result of the efforts related to parametric types in Pizza, another experi-
mental Java compiler. More material about GJ can be found in [BOSW98a]
and [BOSW98b].

2.4.1 Using GJ

To explain how GJ works it is best to look at an example. The following
sample code illustrates GJ’s usage for a singly linked list container. The
sample only includes two operations: add() which adds an element to the end
of the list and last() which returns the last element. The other operations
are omitted.

class List<A> {

static class Entry<A> {

A data;

Entry<A> next;

Entry<A>( A data ) {

this.data = data;

}

}

static Entry<A> entries;

void add( A data ) {

if( entries == null ) {

entries = new Entry<A>( data );

} else {

Entry<A> p = entries;

while( p.next != null ) p = p.next;

p.next = new Entry<A>( data );



70 CHAPTER 2. ALTERNATIVE TECHNIQUES

}

}

A last() {

Entry<A> p = entries;

if( entries == null ) {

return null;

} else {

while( p.next != null ) p = p.next;

return p.data;

}

}

...

}

The most notable difference between GJ source and standard Java source is
the appearance of type parameters denoted by angle brackets. For example,
the class List is parameterized by the type of objects it contains. The place-
holder for this type is A. The list can later be used to hold any type of
non-primitive objects. A list of strings is created as follows:

List<String> list = new List<String>();

list.add( "Hello, world!" );

String string = list.last();

If the list was implemented in standard Java without parameterized types,
the above code would look like this:

List list = new List();

list.add( "Hello, world!" );

String string = (String) list.last();

The cast in the last line of the example is necessary because in a standard
implementation, the operation last() returns an object of type Object -
the most general object type. A non-GJ implementation of List would also
use Object-typed variables to reference the stored user objects. The non-GJ
list can be used to hold any non-primitive object type, just like the GJ list.
But it does so at the cost of sacrificing type-safety. At compile time, the
programmer is not protected from adding apples to the list and accidentally
trying to retrieve oranges. The non-GJ list is effectively untyped.
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This is not only the case in our simple example: all container classes in
Java’s built-in util package use Object-typed references to receive, store
and return user objects. They are all untyped.

Using GJ eliminates the type-cast. This makes the client code type-safe and
easier to read. A List<String> can only be used to hold strings. Trying to
add something else results in a compile time error. For example, it would be
impossible to add Apple objects to a List<Orange>. A list that holds apples
and oranges can be created by making Apple and Orange extend the same
super-class13 and instantiating the list type using this super-class:

class Fruit { ... }

class Apple extends Fruit { ... }

class Orange extends Fruit { ... }

List<Fruit> list = new List<Fruit>();

list.add( new Apple() );

Fruit fruit = list.last();

if( fruit instanceof Apple ) {

... (Apple)fruit

} else if( fruit instanceof Orange ) {

... (Orange)fruit

}

2.4.2 GJ’s Type Algorithm

How does GJ work? According to [BOSW98b], the approaches to implement
generic, i.e. parameterized types can be divided in two categories. GJ em-
ploys a homogeneous approach whereas C++ and Ada use a heterogeneous
one. The heterogeneous solution duplicates the code in a class template for
every template instantiation.

The homogeneous approach used by GJ replaces every occurrence of a type
place-holder (<A> in the above example) with the type Object.14 This can
be verified by decompiling the byte-code generated by GJ for the above List
implementation. For example, the method last() becomes

Object last() ...

and

13or implement the same interface
14This is not 100% correct - but until I get to bounds (section 2.4.3), this explanation

is sufficient.
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String string = list.last() );

becomes

String string = (String) list.last() );

More precisely, GJ replaces type parameters with Object in generic type
definitions. GJ inserts cast from Object to the concrete type whenever an
instance of the parameterized type is used. This novel type algorithm is
called erasure.

GJ’s working principles are more sophisticated than described here. GJ fea-
tures parameterized classes as well as parameterized methods. GJ integrates
Java’s subtype concept for classes and it supports mixing legacy code with
code that uses generic types.

A disadvantage of the homogeneous approach is that it doesn’t allow for
parameterized inheritance; that is, sole type parameters may not occur in the
extends clause of classes and interfaces. The erasure algorithm only works
for the use of generic types in method signatures and variable declarations.
The following code is rejected by the GJ compiler:

class Foo<A> extends A { ... }

On the other hand, instantiations of generic types may occur in the extends
clause:

class Foo<A> extends Bar<A> { ... }

Therefore, GJ’s generic types cannot be used as a composition mechanism in
order to implement the feature models introduced in section 2.2.2. Neverthe-
less, GJ represents major improvement of the Java language. In the course
of the Java Community Process, GJ has been proposed and accepted as a
future addition to the Java language standard.

2.4.3 Bounded Parametric Polymorphism

In C++ type parameters of templates accept any concrete type. There is no
way to restrict the set of types a template can be instantiated with. GJ uses
subtype polymorphism to confine type parameters. The following example
defines the interface Comparable and the class Set. In order to speed up the
lookup operation (binary search), Set keeps its elements sorted internally
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interface Comparable {

int compareTo( Comparable that );

}

class Set<A implements Comparable> {

boolean contains( A a ) {

...

if( 0 == a.compareTo( b ) )

...

}

}

The elements can only be sorted if they can be compared against each other.
Therefore, Set restricts the type parameter A to classes implementing the
Comparable interface. Generally speaking, if a type parameter of a generic
type is bounded, it can only be instantiated using subtypes of the parameter
bound.

Consequently, the erasure algorithm mentioned earlier only replaces the oc-
currence of unbounded type parameters with Object. The erasure of bound-
ed type parameters is their bound. In other words, if no bounds are specified,
Object is the bound. The erasure of the above example yields the following
code:

class Set {

boolean contains( Comparable a ) {

...

if( 0 == a.compareTo( b ) )

...

}

}

2.4.4 Conclusions

A hypothetical compiler supporting a combination of bounded parametric
polymorphism and parameterized inheritance would be a superb mechanism
to implement a GenVoca architecture. I refer to this combination as bounded
parameterized inheritance. It is obvious that GenVoca can only be real-
ized with parameterized inheritance, since inheritance is used to “wire” the
components across the GenVoca layers. But GenVoca also introduces de-
pendencies between the components. For example, a upper layer component
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may invoke a method of a lower layer component. What if the author of
the upper layer is different to the author of the lower layer? What if the
lower layer’s author changes the signature of the method? These problems
can be managed by confining the component template parameters. In order
to explain how this might work, I would like to reanimate the example of
section 2.3.5 on page 63. The following Java-like sample code shows how this
example might look like with bounded parameterized inheritance:

// layer F1

interface F1 {

void foo();

...

}

class S21 implements F1 {

...

}

// layer F2

interface F2 {

void bar();

...

}

class S21<PARENT implements F1>

extends PARENT

implements F2 {

...

void bar() {

foo();

}

...

}

...

Each layer in the above example defines its own inter-layer protocol in the
form of an interface. All components in a particular layer implement this
protocol. The protocol interfaces are named after the layers which are in
turn named after the corresponding variation points in the feature diagram
(figure 2.9).

Using bounded parameterized inheritance has a significant advantage: the
check whether all components are in accordance to their layer protocols can
be done when compiling the components. In traditional GenVoca this check
is done when the components are configured. This difference is important:
the components are usually compiled by the provider of the components but
they are configured by the client or application programmer.

Inter-layer protocols make the dependencies between components in differ-
ent layers explicit. They improve the comprehensibility and soundness of a
GenVoca software system.
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2.5 Aspect Oriented Programming

Aspect-oriented programming (AOP) is a relatively young programming pa-
radigm proposed by the researchers at Xerox PARC. The development of
AOP was inspired by the observation that every software system has to
handle more than one issue simultaneously and that only a subset of these
issues can be organized as a hierarchical composition of modular units, e.g.
methods, function, procedures, objects or modules. The remaining issues
crosscut the units in which this subset of main issues is organized.

This section reviews AOP as a composition mechanism in general and a
mechanism to weave design patterns in particular.

2.5.1 Separation of Concerns

The principle of separation of concerns was coined in 1970 by Dijkstra. It
formalizes what humans instinctively do when they deal with complex mat-
ters: focus on one issue at a time. Applying this principle to programming
means to organize a program into smaller modular units which are made up
of even smaller sub-units. Each of the units is specialized in dealing with one
particular program aspect.

Ideally, during the implementation of a unit, the programmer does not need
to think about the whole program. Instead, he or she can focus on writing
the unit. Another advantage is that the work on a system can be distributed
among many, more or less independently working programmers; that is, sep-
aration of concerns enables the collaborative development of software. Yet
another advantage is that the units of one software system might be reused
for another software system. This is what separation of concerns claims. A
software developer’s reality may look different:

• Separation of concerns tells developers to apply their natural do-one-
thing-at-a-time instinct to software architecture. Yet it does not tell
developers how to achieve separation of concerns on the design level,
i.e. how to decompose the problem into sub-problems.

• Once a problem decomposition is found, that does not mean that it will
remain unchanged until the software system is finished. Sometimes the
requirements evolve, previously unknown limitations of development
tools (compiler, linker, IDE) occur, mistakes in the design are discov-
ered, developers misunderstand each other or have different interpre-
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tations of the design. All these events may require a change to the
problem decomposition and the software system’s design. This is usu-
ally referred to as iterative development. Depending on fuzzy factors
like experience, intellect, instinct, team communication, the develop-
ment iteration hopefully converges towards a working software system.

• Once a software system is implemented by means of composed units, it
seems only natural to re-use these units in other systems. Interestingly
this does not always work. The reason for this is that the aspects
of a software system form multiple dimensions. The system’s main
aspects are located along the predominant dimension. The remaining
aspects belong to subordinate dimensions. The important observation is
that the modularization mechanisms found in traditional programming
languages can only be used to organize units along a single dimension.

A programmer instinctively maps the predominant aspectual dimension
onto this single compositional dimension. The aspects in subordinate
dimensions will crosscut the units in the predominant dimension. This
means that the implementation of subordinate aspects is fragmented
and that the fragments are scattered across the units. Worse than that,
a fragment has to be duplicated if it occurs in multiple units.

If the subordinate aspects of the old system are not needed in the new
system, the old system’s units can not be reused for the new system
because they contain superfluous fragments. The same happens if the
new system introduces subordinate aspects not present in the old sys-
tem.

2.5.2 Aspects

What are aspects? Were and how do they occur? The following examples
answer these questions.

Example: Web-Servers

The main task of a web-server15 is to receive HTTP object requests from
clients (e.g. web browsers), perform the necessary actions to retrieve the
object locally and send the object back to the client. Other main tasks

15The term web-server is used for the program (software system), not the computer
(hardware system).
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include the processing of configuration files, managing a memory cache of
objects, managing client connections, encryption and server side scripting.
These tasks are the predominant aspects of a web-server. In a object-oriented
design, these aspects are encapsulated in units like packages, modules and
classes. In a good object-oriented web-server design, these units can be
reused for servers of other Internet protocols and other kinds of servers like
HTTP-proxies.

Besides these predominant aspects of a web-server there are also subordinate
aspects like logging and failure handling. Both aspects are implemented
in the form of duplicated code fragments scattered across the system’s unit.
Logging is used to trace the behaviour of non-interactive programs like server
daemons. In every important method of every class in every package there
will be at least one line of code devoted to add an entry to the log.

The past has shown that no program, besides TeX of course, is fully correct. Cor-

rectness in this context means that the program has predefined behaviour under

all conditions and for all sorts of input. As the complexity of software systems

grows it becomes inherently difficult to accurately predict their behaviour. In

other words, it is very likely that the system fails under certain conditions. The

term robustness describes the quality of a software system to handle its own fail-

ure. Robust software adds extra code to assert important invariants, to check the

results of method invocations and to react gracefully in case these assertions and

checks fail. Like logging, this failure handling code fragments are duplicated and

scattered across many methods.

Example: List Container

A purpose of a list container is to hold user objects such that the order, in
which the objects are added to the list, is retained. There are other properties
of lists like morphology (whether the elements all need to have the same type
or whether different types are allowed) and bounds (fixed or variable size).
All of the above properties are the predominant aspects of lists. It is possible
to implement these aspects using a traditional class hierarchy.

Another property of lists is synchronization, i.e. whether a list is thread-
safe. A list can be made thread-safe by wrapping its methods with code that
serializes access to the list’s internal data-structure. Java has the appro-
priate synchronization mechanism built-in. The easiest way to synchronize
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a list in Java is to a method synchronized if it accesses the list’s internal
data-structure. A method is synchronized by simply adding the keyword
synchronized to its signature. When the Java compiler finds a synchro-
nized method, it generates special wrapping code around the body of the
method. The wrapping code uses the current object (this) as a mutex in
order to serialize the execution of the method body. As a result only one
thread at a time can execute any of the synchronized methods for a partic-
ular object. Obviously, this serialization code induces additional run-time
overhead. For lists which are accessed by only one thread, this overhead is
redundant. Consequently, a good list container design should distinguish be-
tween lists that are synchronized and lists that are not. It is therefore not an
option to simply add the synchronized statement to every method in every
class in the list hierarchy. Synchronization becomes a subordinate aspect of
lists.

Example: Java2 Containers

The designers of the new Java container (i.e. collections) class library were
aware of the synchronization overhead. They chose the Decorator pattern to
achieve the distinction between synchronized and unsynchronized container
classes. All container implementations are unsynchronized by default. In
order to make a unsynchronized container synchronized, one calls a factory
method in Collections. For example, the factory method synchronized-

List() in the following sample code creates a synchronized list by decorating
(wrapping) the argument list with list synchronized implementation. The
synchronized list implementation does nothing but synchronizing on a mutex
object and forwarding to the wrapped list.

public class Collections {

...

static List synchronizedList(List list, Object mutex) {

return new SynchronizedList(list, mutex);

}

static class SynchronizedList implements List {

private List list;

private Object mutex = new Object();

SynchronizedList(List list) {
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super(list);

this.list = list;

}

public Object get(int index) {

synchronized(mutex) {return list.get(index);}

}

public Object set(int index, Object element) {

synchronized(mutex) {return list.set(index, element);}

}

public void add(int index, Object element) {

synchronized(mutex) {list.add(index, element);}

}

public Object remove(int index) {

synchronized(mutex) {return list.remove(index);}

}

...

}

...

}

The downside of this approach is that it needs one additional decorator class
per container class. The methods in the decorators look all the same. Writing
decorator classes is definitely a tedious task. It is something that should be
automatized. Aspect-oriented programming does exactly that.

2.5.3 AspectJ

The basic idea behind AOP is to encapsulate aspects in a new type of modular
unit and to provide means to selectively distribute and merge these units with
the other predominant units in an automated way. How this works is best
explained using a concrete AOP implementation: AspectJ.

AspectJ is an aspect oriented language extension for Java. It is also a collec-
tion of tools including the compiler ajc and a debugger ajdb. The AspectJ
compiler is Java compatible in that it accepts standard Java source files and
produces standard Java class files. Besides that, the compiler also accepts
source files in extended AspectJ syntax. It is implemented as a front-end
for javac — the Java compiler that comes with Sun’s JDK. The AspectJ
compiler parses the source files, transforms them into standard source files
and passes the transformed Java source to javac which generates the class
files.
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The extended aspect-oriented syntax introduced by AspectJ centers around
the aspect keyword. In analogy to the class keyword which encapsulates
the description of object behaviour and state, the aspect keyword encapsu-
lates the description of aspects.

Synchronization Aspect — Version 1

Here is an example aspect description for the synchronization aspect of
Java2’s container classes mentioned on page 78.

1 package java.util;

2

3

4 aspect SynchronizedCollection1 {

5

6 private Object ( subtypes( AbstractCollection ) ).mutex

7 = new Object();

8

9 pointcut publicMethods( AbstractCollection c ) :

10 instanceof( c )

11 && receptions( public * *(..) );

12

13 around( AbstractCollection c ) returns Object :

14 publicMethods( c ) {

15 synchronized( c.mutex ) {

16 return proceed( c );

17 }

18 }

19 }

Line 1 states that this source and everything in it belongs to the package
java.util — the package which contains Java2’s collection classes. Line 4
defines a new aspect named SynchronizedCollection1.

Line 06 introduces a mutex member to every class being a subtype of Ab-
stractCollection from which every collection class in java.util is derived.
The statement on line 6 is an introduction. An introduction can be used to
add methods and fields to classes and interfaces. As a result of line 6, the
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AspectJ compiler scans for all sub-classes of AbstractCollection and adds
the mutex field to them. The mutex field will be initialized with an instance
of Object (line 7).

The statement on lines 9 to 11 declares a point-cut named publicMethods.
Simply speaking, a point-cut is a well-defined set of locations (aka join-points
in AspectJ terminology) in the control flow of a program. The fact that
the point-cut is parameterized is not important here. The important thing
happens on line 10 and 11. Line 11 matches the body of public methods of
any name, having any return type and any argument. Line 10 constrains this
set further to the set of public methods which are instances of subclasses of
AbstractCollection. In other words, the point-cut on lines 9 to 11 defines
a set of join-points named publicMethods which includes the bodies of all
public methods in sub-classes of AbstractCollection.

The statement on lines 13 to 18 declares an advice. An advice is a code
fragment which is to be added before, after or around the join-points (control
flow locations) in a point-cut. The advice on line 13 is an around advice.
Again, for certain unimportant reasons, the advice is parameterized. On
line 14 the advice refers to the point-cut defined on line 9. The body of the
advice contains a block which synchronizes on mutex. Inside the synchronized
block the special function proceed() is called which is simply a place-holder
for the original join-point around which the advice is put. The expression
c.mutex on line 15 refers to c which stands for an instance of AbstractCol-
lection. c.mutex accesses the mutex field of this instance. Where does this
field come from? Remember, that on line 6 a field named mutex was added
to every subclass of AbstractCollection.

When the classes in java.util package are compiled in conjunction with the
above aspect, every public method of every collection class in that package
will be wrapped with synchronization code. The subordinate aspect Syn-

chronizedCollection1 is now woven into the system. This is very close
to what is intended. Unfortunately, the original aspect-unaffected classes
do not exist anymore. The AspectJ compiler does not allow to have both,
aspect-affected and aspect-unaffected classes in a single system. The deci-
sion whether the collection classes are synchronized or not has to be made
at compile time. This is demonstrated below in a second version of the
synchronization aspect.
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Synchronization Aspect — Version 2

The following version of the synchronized aspect allows synchronized and
unsynchronized collections to co-exist in the same program:

1 package java.util;

2

3

4 aspect SynchronizedCollection2

5 of eachobject(

6 instanceof( AbstractCollection ) &&

7 receptions( public void synchronize() )

8 ) {

9

10 void ( subtypes( AbstractCollection ) ).synchronize() {}

11

12 Object mutex = new Object();

13

14 pointcut publicMethods( AbstractCollection c ) :

15 instanceof( c )

16 && receptions( public * *(..) )

17 && ! receptions( public void synchronize() );

18

19 around( AbstractCollection c ) returns Object :

20 publicMethods( c ) {

21 synchronized( mutex ) {

22 return proceed( c );

23 }

24 }

25 }

The main difference to the previous version of this aspect is that Synchro-
nizedCollection2 is not a singleton anymore. Instead, each synchronized
instance of a container class is bound to an instance of this aspect. As-
pects can be instantiated because AspectJ translates aspects into normal
classes. The eachobject modifier on line 5 to 7 binds an instance of this
aspect to every instance of a subclass of AbstractCollection on which the
synchronize() method has been called. The binding will be established
when synchronize() is called. This method is added to every Abstract-

Collection subclass by the introduction on line 10. The mutex field is now
a member of the aspect (line 12). The point-cut on line 14 excludes the
synchronize() method (line 17).
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This has the effect that every public method has to check whether the current
collection instance is synchronized. A synchronized collection instance is
bound to (i.e. associated with) an instance of the SynchronizedCollection2
aspect. The association is established when the synchronize() method is
called.16 Depending on whether the collection instance is synchronized or
not, every public method in the collection class either executes synchronized
or unsynchronized code.

class List extends AbstractCollection {

public void add( ... ) {

SynchronizedCollection2 aspect =

SynchronizedCollection2.aspectOf( this );

if( aspect != null ) {

synchronized( aspect.mutex ) {

orig_add();

}

} else {

orig_add( ... );

}

}

public void orig_add( ... ) { ... }

}

Other AspectJ Features

AspectJ provides much more control about selecting join-points than can be
described here. Possible join-points include locations in the code where a
method is called, where an exception is thrown. Besides the around advice,
there are the advices before and after. An introduction can also make a
class extend a different class or implement another interface. I have shown
that aspects can be instantiated once per JVM (singleton aspect) and once
per object. Furthermore, there can be an aspect instance per control-flow.

AspectJ allows aspects to extend classes. This is useful for eachobject as-
pects like version 2 of the synchronized collection aspect. Note, that AspectJ
translates each aspect into a Java class. If an aspect A extends a class C,
AspectJ will translate this aspect A into a class A′ which extends class C.

16In the aspect description, synchronize() has an empty body. However, the AspectJ
compiler will fill its body with code that establishes the binding between the collection
instance and a newly created aspect instance.
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Aspects can also be abstract; that is, some or all of its point-cuts may be
abstract, i.e. declared but not yet defined. The abstract point-cuts may
be referred to by the abstract aspect’s advises. Aspects can extend abstract
aspects and define the inherited abstract point-cuts. Aspects may not extend
concrete aspects. Neither may classes extend aspects.

2.5.4 Conclusions

Aspects = Features?

The similarity between aspects and features is striking. Features are impor-
tant properties of concept instances and aspects are properties of instances
of language constructs like classes and methods. At the design level, features
and aspects are synonymous terms. The important difference between as-
pects and features is that aspects are not only a design paradigm but also
an implementation mechanism.

This suggests that aspects can be used as a variability mechanism for the
implementation of feature models. The synchronized list example on page 80
demonstrates the implementation of very simple feature diagrams. The fea-
ture diagrams for version 1 and 2 of that example are shown in figure 2.13.
Both diagrams are overly simplified in that the Storage feature is in fact the
parent node of a complex tree of sub-features. This feature tree is needed to
classify the different types of collections (set, bag, map, list).

Figure 2.13: Feature diagram of a) version 1 and b) version 2 of the synchro-
nized collection aspect.

I do not want to give a complete description of how aspect-oriented program-
ming can be used to implement feature models because of two reasons.
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• The implementation of feature models heavily depends on the AOP
implementation used.

• AspectJ in it current version can not be used to implement feature
models in way that competes with, for example, parameterized inheri-
tance: the variability in feature models can only be resolved at runtime
inducing a considerable amount of overhead.

The last point can be illustrated using the above example. The only dif-
ference between figure 2.13a and b is the optionality of the synchronization
feature. If synchronization is modelled as an optional feature, the optional-
ity is decided at runtime; that is, every method of a collection has to check
whether the collection object is synchronized or not and execute the appro-
priate code. Usually, a collection instance will either be synchronized or
unsynchronized an remain so until it is garbage collected. It is very unlikely
that an application requires a collection to become synchronized in the mid-
dle of its lifetime. Hence, the optional synchronization feature should be
resolved statically.

This does not only apply synchronization — most variation points in a soft-
ware system can and should be resolved statically. Currently AspectJ leaves
developers two alternatives: either all collection classes are (un)synchronized
(static mandatory feature) or synchronization is decided at the object level
(dynamic optional feature). If AspectJ included a mechanism for retaining
the aspect-unaffected classes, the optionality could be decided at compile-
time.

On the other hand, AspectJ has promising potential to be used for feature
model implementations. Section 2.2.2 shows that feature models can be im-
plemented using single inheritance but that this induces duplication except
in the (unlikely) case that the diagram does not contain simultaneous non-
singular variation points. Duplication is only problematic if it has to be car-
ried out manually by the programmers. AspectJ can be used to automatize
duplication if simultaneous non-singular variation points are implemented as
aspects (figure 2.14).

Syntax

AspectJ tries to be in-line with traditional Java syntax. This is more con-
fusing than helpful. For example, the parameterization of point-cuts and
advices looks particularly strange:
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Figure 2.14: Using single inheritance and aspects to implement feature mod-
els.

pointcut p( AbstractClass c ) : instanceof( c ) ...

The parameter c looks like a normal variable of type AbstractClass. On
the other hand, it is passed to the instanceof designator which makes it a
type name.

Semantics

Aspect-oriented programming can be achieved by either a creating a new
language or by extending an existing language, i.e. as an language add-on.
AspectJ is an instance of the latter. Probably, the most important draw-
back of this approach is that it requires sophisticated and expressive means
to systematically dissect the constructs of the original language. Casually
speaking, a lot of thought has to be invested in taking apart what should be
separate in the first place.

AspectJ treats aspects as first-class citizens. This decision has disadvantages:

• The existence of yet another top-level concept besides objects, classes
and interfaces is confusing.

• The aspect keyword unifies two concepts that should not be unified:
The object-quality of an aspect and the meta-quality of an aspect.
The object-quality suggests that aspect have state and behaviour. The
meta-quality suggests that aspects describe transformations of pro-
grams.
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Nevertheless, AspectJ provides powerful mechanisms for the management of
large existing object-oriented software systems.

2.6 WeaveJ

In this section I will describe the concept, design and some implementation
issues of the WeaveJ prototype which I developed during the research for
this text. Generally speaking, WeaveJ is a tool for class composition and
it is mainly intended for pattern weaving. It lets developers focus on the
patterns they want to use in their software instead of forcing them to think
about how these patterns can be woven.

Pattern weaving, on the other hand, is just an incarnation of feature mod-
elling and generative programming (section 2.2). When seen from a feature
modelling perspective, WeaveJ is a variability mechanism similar to multi-
ple inheritance. Since Java does not support multiple inheritance, WeaveJ
simulates it by serializing the multiplicity. Once a serialized form of the mul-
tiple inheritance graph is found, WeaveJ composes the classes using single
inheritance.

But WeaveJ is not just “multiple-inheritance for Java”. WeaveJ delays the
composition of classes until the final application is compiled. Hence, the
application programmer has complete control over the composition process.
Framework classes can be extended or replaced by the application program-
mer at any location in the inheritance hierarchy — not just at the leafs.
This is an important advantage over traditional multiple inheritance, where
the inheritance relation between framework classes is fixed and cannot be
influenced by the application programmer.

WeaveJ’s composition granularity is not as fine as, say, AspectJ’s. WeaveJ
only supports composition at the class level. Roughly speaking, AspectJ
composes at the intra-method level. I claim that using WeaveJ makes this
level of composition granularity obsolete because WeaveJ also represents a
new approach to framework design. AspectJ is a implementation technique
which does not really introduce new concepts into the design of software.
Aspect-oriented programming gives the impression that it is intended to
make up for problems that should actually be fixed at the design-level. The
object-oriented paradigm is powerful enough to provide truly reusable soft-
ware under the assumption that the inheritance relation between classes is
managed in a less static way. WeaveJ encourages this new design approach.
It employs Java interfaces to specify aspects of objects. It uses classes to
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implement these aspects and it uses inheritance to compose these aspects
into a composite object.

WeaveJ is written in and for Java. It is a post-compilation tool, which
means that it is for use after compilation. It is used by both, the frame-
work provider/maintainer and the framework user, i.e. application/client
programmer. WeaveJ adheres to the component-oriented paradigm (COP,
see [Szy99]). It maps COP to OOP by employing classes as components and
composing them with inheritance.

WeaveJ’s working principle is best explained using a simple example. The
feature diagram in figure 2.15a shows a concept with three or-features. Ac-
cording to the definition in section 2.2.2, any non empty subset of the set
{F1, F2, F3} can be included in concept instances of C. Figure 2.15b shows
a complete implementation of this feature model using multiple inheritance.

a) b)

��� ��� ���

����� �����

�����

�������

c)

	�
���

	�

	��

	�


Figure 2.15: Using multiple inheritance to implement a feature model: a)
the feature diagram, b) the class diagram of the implementation and c) seri-
alization of F123.

Assuming that there is only F123, neglecting the existence of F12, F23 and
F13, it does not really make a difference to F123 if it inherits the necessary
functionality by multiple inheritance or in a serialized chain of single inheri-
tance as shown in figure 2.15c. WeaveJ uses this effect to simulate multiple
inheritance. Taking F12, F23 and F13 into account again, only requires that
certain classes have to be duplicated in order to avoid conflicts. This is
explained in section 2.6.3.

The single inheritance chain in figure 2.15c is very similar to the configurable
inheritance hierarchies in GenVoca architectures. In GenVoca, each concept
instance is represented by a chain of components — one component per
layer. Upper layer components are derived from lower layer components.
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WeaveJ represents a hybrid between GenVoca (parameterized inheritance)
and multiple inheritance: feature models can be implemented as if multiple
inheritance was available but WeaveJ converts these model implementations
to single inheritance hierarchies like the ones in a GenVoca architecture.

The good news for Java programmer using WeaveJ is that they can now
develop their programs as if Java supported multiple inheritance. WeaveJ
will transparently simulate multiple inheritance using single inheritance. The
generated programs will run on any Java2 compatible virtual machine.

The WeaveJ tool is pure Java, meaning that it is written in Java and can
only be fed Java. WeaveJ does operates on the byte-code rather than the
source-code. This means that its input and output are class-files. I was
able to implement the WeaveJ in only three weeks, thanks to Java’s well
defined class-file format and the availability of several byte-code engineering
libraries. It still has certain insufficiencies which will be analyzed at the end
of this section. Thus, WeaveJ in its current revision is definitely prototypi-
cal. Despite this, it can be used to verify the feasibility and benefits of this
variability mechanism.

Terminology remark: When using the term interface in this section I am
referring to the Java meaning of interface. The term implementation refers to
a Java class implementing a particular Java interface. The terms component
and composite are used according to their COP definition. Their use in this
section is not related to the Composite design pattern.

2.6.1 The WeaveJ Development Process

For interfaces, Java supports multiple inheritance. Consequently, the imple-
mentation of a feature model in WeaveJ is specified using interfaces. This
is the first phase of the WeaveJ process — based on the feature model, the
programmer creates an inheritance graph made up of interfaces.

The second phase is writing appropriate classes which implement the inter-
faces defined in the first step. A class implementing a particular interface
can assume that the methods in the parent interfaces are available and it
only needs to implement the methods required by its own interface. There
can be any number of alternative classes implementing a particular interface.
Only one implementation will occur in the final application. The application
represents a concept instance.

The third phase is the specification of the binding file. For every interface,
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the binding file specifies one implementation class. Only the specified class
is included in the application. The binding mechanism will be dealt with in
detail in section 2.6.5.

The fourth phase is building the application. The programmer uses the
Java compiler to translate the source code of all implementation classes into
class files. The WeaveJ tool is then used to compose the compiled byte-code
representations of all implementation classes in a single inheritance chain,
simulating the interface inheritance graph created in the first phase.

From now on, the feature modelling terminology will not be used anymore. I
will refer to interfaces with parent interfaces as composites. Interfaces without
parent interfaces are called components. A class which implements one of
these interfaces is referred to as composite implementation or component
specification respectively.

The next section introduces a simplified graphical notation for class dia-
grams. These diagrams contain composition graphs and the visualize class
and interfaces as boxes. As in UML, interface and class inheritance is sym-
bolized by arrows with empty heads. The realizes relation (implements in
Java) between classes and interfaces is not denoted graphically but textually,
e.g. “Aimpl implements A”. If there is more than one implementation of a
particular interface, the classes will be numbered as in “A1

impl, A
2
impl . . . ”.

2.6.2 Serialization

Serialization17 is the algorithm used by WeaveJ in order to simulate multiple
inheritance. For any class, it does not matter whether it inherits from all
its base classes at once or from only one base class which inherits from the
second which inherits from the third and so on.

On the left side of figure 2.16 a more complex composition graph is shown. C,
E, I, J and K are composite interfaces. K and J are composites consisting
of other composites. The corresponding Java source skeleton is as follows.

// the interfaces:

interface K extends C, J;

interface C extends A, B;

interface J extends E, I;

interface E extends D;

interface I extends F, G, H;

17not to be mistaken for Java’s object persistence mechanism
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// the components

class AImpl implements A;

class BImpl implements B;

...

class KImpl implements K;

Note that there can be many classes implementing a particular interface.
WeaveJ selects one of these implementations based on the current bindings,
a mechanism that will be explained later in this section.

Figure 2.16: Post-order of a more complex composition graph.

The goal of serialization is to produce an inheritance graph with at most
one parent per class (single-inheritance graph). This is because Java only
supports single implementation inheritance. The result of serializing the
above example can be described using the following Java sample code.

class BImpl extends AImpl;

class CImpl extends BImpl;

...

class KImpl extends JImpl;

Obviously, the single-inheritance graph represents just one of the many total
orders which satisfy the partial order defined by the original graph. Formally
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speaking, there is only one constraint on the order of classes in the single-
inheritance graph:

Let B be an interface which directly or indirectly inherits the
interface A (A ≺ B). In the resulting single-inheritance graph B’s
implementation must occur after A’s; that is, A’s implementation
must directly or indirectly inherit B’s (Aimpl ≺ Bimpl).

The order shown on the right side of figure 2.16 is the post-order of the
graph to its left. The post-order can easily be computed by doing a recursive
depth-first traversal on the graph. Upon return from each level of recursion
the current node is appended to the end of a list. When returning from the
starting node (K in the above example), the list holds the graph’s post-order.
Note that if the given graph defines an order on the outgoing edges of each
node it will only have one post-order.

Another possible total-order besides the post-order is

A ≺ B ≺ D ≺ F ≺ G ≺ H ≺ C ≺ E ≺ I ≺ J ≺ K

WeaveJ uses the post-order because it is easy to determine and because it
keeps related classes close to each other. As will be shown later, the second
reason is relevant to other considerations.

The examples presented so far are special since their composition graph de-
generates to a tree. WeaveJ can handle the more general single-rooted di-
rected acyclic graphs like the one shown in figure 2.17. Here, interface F is
inherited by two interfaces: E and I. Obviously, the post-order still satisfies
the above constraint because multiply inherited interfaces and their ancestors
might be appended earlier but never later. Consequently, they only move to-
wards the beginning, i.e. get smaller. In order to violate the constraint, an
interface would have to be appended later such that it moved towards the
end of the list thus bypassing one of its descendants.

2.6.3 Duplication

The above examples only deal with one composite graph at a time. Clearly,
frameworks can comprise any number of composites. The resulting composi-
tion graph is not necessarily single-rooted any more. To be able to produce
a serialization, WeaveJ treats each composite independently. Each com-
posite defines its unique single-rooted composition subgraph. The example
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Figure 2.17: A directed, acyclic composition graph.

illustrated in figure 2.18 has two composites C and E. Both inherit the
component B. Unfortunately, Bimpl appears in the middle of both post-
orders to the effect that two versions of Bimpl are needed: B1

impl Â Aimpl and
B2
impl Â Dimpl.

Figure 2.18: Duplication: a) multiple-rooted composition graph, b)
and c) two single-rooted subgraphs of it, d) serialized form of b, e) serialized
form of c.

If the subgraphs looked like figure 2.19 with B at the beginning of each post-
order, then both post-orders would be able to share B. The only difference
between figures 2.18 and 2.19 is the changed order of the outgoing edges of
C and D. This means that the order in which edges will be traversed during
recursion is very important.
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Figure 2.19: A post-order which allows for sharing.

Duplication becomes even more significant when the duplicated component
has ancestors, as shown in figure 2.20. In this case all ancestors have to be
duplicated as well. This is because Fimpl needs to be duplicated (F 1

impl Â
Aimpl and F 2

impl Â Dimpl) which in turn causes B to be duplicated (B1
impl Â

F 1
impl and B2

impl Â F 2
impl). The current WeaveJ prototype does not make any

provisions to minimize class duplication. Such optimization would have to
select the best configuration based on, for example, the number of duplicated
classes or their sizes.

Figure 2.20: Duplicating the ancestors.

Using parameterized inheritance for GenVoca architectures causes duplica-
tion of code (see also section 2.3.4). Using AspectJ to implement feature
models induces code duplication, too. But both kinds of duplication are
not problematic because they are carried out automatically by the compiler.
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The same applies to WeaveJ: the classes are duplicated without bothering
the programmer. Duplication in WeaveJ is invisible to the programmer with
the exception of the increase in code size.

2.6.4 Supporting Inheritance

As shown in previous sections, an alternative to inheritance does not neces-
sarily need to abandon it. Consequently, WeaveJ does support inheritance
between implementations. This is best illustrated using an example (see
figure 2.21).

Figure 2.21: Inheritance between implementations: a) composition graph,
b) non-composed implementations, c) composed implementations

Usually, atomic implementations, i.e. implementations of non-composite in-
terfaces, do not have a parent class.18 This is because WeaveJ encourages
a framework design based on composition instead of inheritance. However,
in some situations it might be convenient to allow the client programmer to
extend or override functionality provided by one of the framework’s compo-
nents; that is, implementations.

If, for example, the framework component is buggy and needs to be fixed, the
client programmer has to replace it with a custom implementation. Often, the
custom implementation differs from the component it replaces only in minor
details. This suggests that the custom implementation inherit the framework
component. Figure 2.21 shows that B2impl extends Bimpl and that B is
bound to B2impl. In order to support inheritance between implementations,
WeaveJ’s serialization algorithm only needs to include all ancestors of an
implementation (Bimpl in this example).

This form of inheritance can be useful in other situations too. Suppose that
a component’s activity must be monitored in order to debug it. This could
easily be accomplished by extending this component through inheritance and
wrapping every method in the inheriting component with logging code.

18other than the implicit java.lang.Object.



96 CHAPTER 2. ALTERNATIVE TECHNIQUES

As was described in previous sections (1.2.2, 1.5.1, 1.6.2 and 2.3.4), inheri-
tance has many pitfalls because it provides white-box reuse. With WeaveJ,
an implementation can only access the public interface of its parent imple-
mentations; that is, at compile time parents only expose their public interface
to their children (black-box inheritance). This restriction allows WeaveJ to
exchange implementation classes based on a binding file (see next section).
The client programmer can even exchange an implementation provided by
the framework.

The kind of inheritance used by WeaveJ for composition is referred to as
implicit inheritance. The kind of inheritance described in this section is dif-
ferent: it allows an implementation of a particular interface to inherit from an
existing implementation of the same interfaces. This is explicit inheritance
between concrete classes. Therefore, all the harmful effects of white-box in-
heritance are available. Explicit inheritance between implementations should
only be used sparingly in the design of a framework. It is more or less meant
as a last resort feature. For example, it can be used by programmers who
need to fix a broken framework component. They create a new component
which explicitly inherits the framework component in order to override the
broken functionality.

WeaveJ composes components through inheritance. The composite inherits
from all the components it is composed of. Consequently, WeaveJ allows
composites to override public methods implemented by their components.
Programmers should therefore use this option sparingly. If a system’s com-
posites frequently override their component’s methods, something is wrong
with the system’s design.

2.6.5 Binding

One of the issues not covered yet is how WeaveJ selects an implementation
given a particular interface. WeaveJ uses a configuration file which consists
of a list of pairs, each binding an implementation to an interface.19 The
syntax of the bindings file is XML. An example of a simple bindings file is
shown below.

<bindings>

<import package="de.tub.test"/>

<bind interface="X" class="XImpl">

19In this text, the term binding does not denote the process of mapping names to values
in a compiler or the name to address resolution in linkers.
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<bind interface="de.tub.test.Child" class="ChildImpl2"/>

</bind>

</bindings>

The example demonstrates all features of WeaveJ’s binding mechanism:

• A Bindings file can import the bindings of other packages. The corre-
sponding element is <import package=""/>. The importing bindings
file may also override the bindings of the imported one.

• WeaveJ accepts qualified and unqualified class names. Unqualified class
names implicitly refer to the current package. Names of classes from
imported packages always have to be qualified.

• The current package is not explicitly specified in the bindings file. In-
stead, WeaveJ determines the current package using the path of the
bindings file and the class-path environment variable.

• Bindings can be nested. The outer binding is then specified using
the unabbreviated syntax <bind...> . . . </bind>. The inner bindings
occur between the opening and closing tag.

The scope of the inner binding is its outer binding. The inner binding will
only be used for the composition of the implementation given in the outer
binding. Outside the outer binding the default binding of the inner inter-
face is be used. In the above example the interface X is bound to the im-
plementation XImpl. Suppose that XImpl is a composite that requires a
Child implementation from the de.tub.test package. Also suppose that
the bindings file of package de.tub.test binds Child to ChildImpl. This
binding is temporarily overridden by the inner binding, which binds Child
to ChildImpl2 from the current package. This has the effect that for XImpl’s
composition ChildImpl2 will be used instead of ChildImpl. Compositions
of other implementations will use the default ChildImpl again.

Nested bindings in combination with WeaveJ’s support of inheriting imple-
mentations provide a powerful tool for client programmers. They are able to
fix things that are broken in the framework or toolkit they use. They can
add debugging facilities to their own components or the framework. And
the debugging facilities can be switched on and off only by modifying the
bindings file and running the WeaveJ. No source modifications are necessary.

In using WeaveJ for framework design, a big improvement over traditional
object-oriented libraries can be achieved: even without access to the sources,
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functionality can be inserted and modified at any location in the framework.
Traditional OO-libraries allow functionality to be added to the leaves of the
class-hierarchy only.

WeaveJ’s binding mechanism enables programmers to postpones the decision
about which implementation is used for a particular interface. The frame-
work author can make suggestions in form of default bindings but the client
programmer makes the final decision. Furthermore, programmers can “fine
tune” the mapping between interfaces and implementations by using nested
bindings.

2.6.6 Object Creation

In section 2.1.1 I already mentioned that object-oriented software gains flex-
ibility and reusability by avoiding to mention names of concrete classes for
object creation and variable declarations. In an WeaveJ-based framework in-
terfaces are used to declare member variables and method signatures. Also,
names of the implementations are unknown at compilation time. However,
object creation requires the concrete class of the new object. Currently, there
are three design patterns addressing this particular problem:

• The Abstract Factory is an abstract class which defines an interface to
create a family of objects, i.e. its products. The products are declared
using their (abstract base) class. In Java a factory’s products can
be declared using interfaces, too. Concrete factories implement the
interface of their abstract base class. Different concrete factories create
different concrete products. Instead of creating objects directly, the
clients use the factory to obtain the object instances. The power of this
design pattern lies in the fact that concrete factories can be exchanged
dynamically thereby changing the family of objects to be created.

• The Factory Method pattern, also known as Virtual Constructor, is
similar to the Abstract Factory pattern. It is, in fact, a more general-
ized form of the Abstract Factory. A factory method is simply a virtual
method which creates a new object and returns a reference or pointer
to it. The factory method’s return value is declared using the base-
class or interface of the objects to be created. Subclasses of the class
containing the factory method can then override this method to create
objects of a particular subclass. With this definition in mind an ab-
stract factory could be described as a class mostly consisting of factory
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methods. The focus of the Abstract Factory pattern is the creation of
families of objects.

• In the Prototype pattern a class defines an interface for creating copies
or clones of its instances. Every object of this class can then be dupli-
cated (cloned). Subclasses can then refine the way duplication is done.
Once the client has obtained the first instance of this class it can later
create more objects by cloning it. The first instance can, for example,
be held in a static member variable which is initialized during program
startup.

The Abstract Factory, Factory Method and, to some extent, Prototype pat-
terns all

• use (abstract) base-classes or interfaces to declare the objects to be
created,

• hide a language’s native mechanisms for object construction,

• have to be “designed-in”, introducing considerable overhead.

The Abstract Factory is just a specialized form of the Factory Method pat-
tern. This means that there are essentially two distinct alternatives to built-
in object creation: (1) the prototypical approach which uses duplication of
objects and (2) the constructional approach which uses a virtual construc-
tor. The prototypical approach works especially well with object composition
because it is often easier to clone an existing object structure than to assem-
ble a new one. Examples of object composition were given in sections 1.6.2
and 2.1.

Since WeaveJ is a static technique and not based on object composition,
it uses a more constructional approach for object creation: for each bound
interface WeaveJ generates a surrogate class. The name of the surrogate class
equals the name of the interface plus Inst. This surrogate class can be used
to create objects using the operator new. The surrogate classes are created
during WeaveJ’s GenStub phase. Another phase called Resolve replaces all
references to a surrogate class with a reference to the implementation class
bound to the surrogate’s interface.

Of course, object creation needs to be parameterizable; that is, constructors
should be allowed to have arguments. For this purpose, interfaces may define
a special initializer method. The initializers name equals the interface’s name
except that the first letter must be lower case. WeaveJ uses the initializer
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methods’ signature for the constructor of the surrogate. It also adds a con-
structor with that signature to each of the interface’s implementations. The
surrogate’s constructor is empty because the surrogate will never appear in
the final program. The implementation’s constructor forwards the call to the
initializer method.

Figure 2.22 shows an example with three interfaces (Foo, Bar and FooBar). It
illustrates the configuration after WeaveJ was run in GenStub mode but be-
fore Compose mode. Foo has two implementations and Bar has one. Because
FooBar extends Foo and Bar, FooBarImpl is be composed of one Foo and
one Bar implementation. For every interface there is a surrogate (FooInst,
BarInst and FooBarInst) and a stub (FooStub, BarStub and FooBarStub).
Stubs will be discussed in section 2.6.8.

In order to be instantiated, a surrogate must not be abstract; that is, it must
contain a body for all methods required by its interface. Therefore, each
surrogate is a complete implementation of its interface with empty meth-
ods. The constructor of the surrogate FooBarInst has the same signature
as the initializer fooBar(). Clients use the new FooBarInst(x,y,z) con-
structor to create an instance of a FooBar implementation. WeaveJ’s Re-
solve phase will replace this with new FooBarImpl(x,y,z), provided that
FooBarImpl is bound to FooBar. Why doesn’t the example list a construc-
tor for FooBarImpl? Because there simply is none after the GenStub phase.
WeaveJ’s Compose phase generates a constructor later. This constructor
contains code to forward the call to FooBarImpl’s fooBar(arg1,arg2,arg3)
method.

Although this looks complicated, it is so only with respect to WeaveJ’s in-
ternals. The WeaveJ user is only confronted with simple rules. To be more
precise, the user should

• not write constructors in an implementation,

• put the initialization code to initializer methods,

• declare these methods in the interface,

• use the surrogate for object creation.

Two more issues are worth noting. First, the initializers may be overloaded
just like constructors in standard Java. The second point is about what in
standard Java is known as constructor chaining. Java requires that the first
thing in a constructor is a call to the parent’s constructor. If there is none
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Figure 2.22: Object creation using surrogates.

Java will insert a call to the parent’s default constructor. Furthermore Java
also prohibits access to this until the parent’s constructor has been called.

In WeaveJ-based designs the job of standard Java constructors is done by
initializer methods. Therefore, the initializer of a composite implementation
should at least forward the call to each of its component’s initializers. This is
why fooBar() has three arguments. The first argument is passed to foo(),
the second and third are passed to bar():

class FooBarImpl extends FooBarStub implements FooBar {

void fooBar( Arg arg, Arg1 arg1, Arg2 arg2) {

foo( arg );

bar( arg1, arg2 );

...

}
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...

}

The above list of conventions must be extended accordingly: WeaveJ users
should also include code in their composite’s initializer, which then forwards
to the components’ initializers, if there are any. Because users are likely
to overlook the above conventions occasionally, WeaveJ offers the optional
Check phase. When WeaveJ is run in Check mode it verifies whether (1)
all initializers in a implementation are declared in the interface and (2) each
initializer forwards to the components’ initializers.

The following list summarizes the advantages of WeaveJ’s object creation
mechanism:

• It is in accordance with WeaveJ’s policy of avoiding concrete class
names for member variables and method signatures. Concrete class
names are obsolete even for object construction.

• Unlike the above creational design patterns it does not have to be
designed-in.

• The order of component initialization is less restrictive than the con-
structor chaining scheme in standard Java. The components’ initial-
izers can be called anywhere in the composite’s initializer and in any
order. this can be used everywhere in the initializer.

2.6.7 Deployment

So far, I have introduced the separate phases of the WeaveJ tool. It is now
time to have a look at how all these phases interact and how a WeaveJ-based
framework or class library is distributed, i.e. how the framework provider
and the client programmer use WeaveJ. Figure 2.23 is an overview of the
stages needed to create a framework distribution (upper half) and to create
the final program (client) which uses the framework.

The framework creation is done by the framework provider. The framework
distribution contains all framework packages including the interface-classes,
a bindings file per package and the stub and implementation classes (this
section treats stubs and surrogates as one). Figure 2.23 shows that framework
provider and client programmer essentially perform the same steps. The
different parts of the framework distribution join the client creation process
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Figure 2.23: Deployment: development of framework and client packages.
The names of WeaveJ phases appear in brackets.

at different stages. The client creation process ends with two stages not
found in the framework creation process: composition and resolution. Note
that the resolution eliminates the stubs and bindings file. Neither appears
in the final program distribution.

The following list summarizes all stages (FP = framework provider, CP =
client programmer):

1. Interface specification: The FP writes the Java source files for the
framework’s interfaces based on the framework’s design. The FP also
creates the initial bindings file. If the framework comprises multiple
packages there will be one bindings file for each package.

2. Compilation: the FP uses the Java compiler to create class files for all
interfaces.

3. Stub generation: The FP uses WeaveJ in GenStub mode to produce
stub and surrogate classes for all bound interfaces. The bindings file
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determines which interfaces are bound. Note that the implementations
listed in the bindings file do not exist yet.

4. Implementation: The FP writes the implementations of all interfaces.
At least one implementation must be created for every interface.

5. Compilation: The FP compiles the implementations.

6. Verification: The FP uses WeaveJ in Check mode to verify the imple-
mentations (see previous section).

7. Deployment : The FP bundles all necessary files and distributes them.

8. The next stages are identical to the previous ones. This time the CP
writes program specific interfaces and implementations. The imple-
mentation will most likely be composed of the framework’s implemen-
tations. In the sources this manifests itself in program specific inter-
faces inheriting framework interfaces. The CP might additionally write
implementations inheriting the framework’s implementations. The pro-
gram specific bindings file includes some or all of the framework’s de-
fault bindings files. The program specific bindings file may override
some of the default bindings as well.

9. Composition: The CP uses WeaveJ in Compose mode to compose the
implementations through inheritance (see sections 2.6.2 and 2.6.3). The
result is additional class files.

10. Resolution: The CP uses WeaveJ in Resolve mode to replace the in-
stantiations of surrogate with real composed implementations (see sec-
tion 2.6.6).

11. Deployment : The CP distributes the final program.

FP and CP are just roles. Of course, these roles can actually be performed
by a team rather than individuals. The frameworks also needs to be tested,
which is best done with test client programs. Consequently, the framework
provider also performs the client programmer role.

Furthermore, real development will most likely consist of many iterations of
the stages presented here. These iterations are not shown in figure 2.23. If
developers used a make utility in order to automate the development process,
every stage of the process would map to a target in the makefile.
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2.6.8 Implementation Issues

Although I do not want cover many implementation details of WeaveJ, some
of the issues might be relevant in this context. I assume that the reader has
a basic understanding of Java’s underlying class-file structure and byte-code
instructions [LY99].

Byte-code Engineering Libraries

As mentioned before, WeaveJ is a post-compilation tool which analyzes and
modifies the byte-code of compiled Java classes. Although the format of
Java class-files is well documented, reading, modifying and writing it is a
complex task. This is because a binary Java class is a highly referential
data-structure. Fortunately, several byte-code engineering libraries are freely
available. The libraries I considered were Markus Dahm’s BCEL library,
CFParse and JikesBT, the latter two being provided by IBM.

JikesBT was chosen because it provides a fairly complete object-model as
an abstraction of the class-file structure. This object-model is similar to the
one provided by Java’s built-in reflection capabilities with the difference that
reflection is read-only. The other two libraries were not appropriate because
they either operated on a low level revealing all the class-file details (BCEL)
or were too limited in their object-model (CFParse).

JikesBT’s object model completely hides the constant-pool of the class file.
JikesBT replaces all references to items in the constant pool with references
to objects in the object-model. The invokevirtual opcode, for example,
expects the constant-pool index of the called method’s signature. The object-
model represents both the opcode and the called method, i.e. the target, as
objects referencing each other.

At some point during the development of WeaveJ I found that direct mod-
ification of the constant pool would be convenient too. Suppose that one
particular method is invoked in many different places in a class-file and that
the target of all these invocations (calling sites) needs to be changed to a
different method. Without access to the constant-pool, an iteration over all
calling sites is required. With access to the constant-pool one just needs
to patch the constant-pool entry holding the target’s name and signature.
This works because all calling sites of a particular method refer to the same
constant-pool entry.
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Setting the Parent Class

During composition WeaveJ uses JikesBT to modify or set the parent-class
of other classes. JikesBT provides a method which does that but it only
changes the symbolic reference to the parent-class. There are other places
throughout a class in which the parent-class is referenced. When a Java class
overrides one of its ancestors’ methods, the super keyword can be used to
call the overridden method from within the overriding one. Every time ’su-
per’ appears in the Java source, the compiler generates an invokespecial

instruction. This instruction does not only refer to the called method but
also to the class in which this method is defined. For example, during com-
pilation of code like super.someMethod() the inheritance chain is searched
upwardly for the first parent-class that contains someMethod(). The gen-
erated invokespecial instruction refers to this class. This has the effect
that the average Java class will be sprinkled with symbolic references to its
ancestors.

This issue also applies to WeaveJ, since WeaveJ supports inheritance between
implementations and allows composites to override components’ methods.
When WeaveJ sets the parent class of an implementation, it changes each
invokespecial to refer to one of the new ancestors. To find the ancestor,
WeaveJ mimics what Java does when compiling the super keyword.

Stub Generation

WeaveJ’s GenStub phase creates a stub and a surrogate for each bound in-
terface. Surrogate classes were described in section 2.6.6. Besides serving as
the base for the surrogates, stubs also may be used as the base of implemen-
tations. In WeaveJ-based systems, a composite implementation is allowed to
override methods defined in its components. An overriding method usually
invokes the overridden one. In Java this is done using the super keyword.
Evidently, if there was no stub the compiler would refuse to compile code
like super.someMethod(). The stub class therefore contains dummies for all
methods required by each component interface. Figure 2.24 illustrates this.
It shows a composite interface XY, its stub XYStub and one implementation
XYImpl. XYImpl overrides foo() defined in XImpl. Before composition, the
invokespecial instruction in XYImpl.foo() references XYStub.foo(). Af-
ter composition, this invokespecial refers to XImpl.foo().

The example also shows that stubs are only needed during development. The
fully composed program will not contain any stubs or surrogates. Atomic
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Figure 2.24: Stubs: a) before composition b) after composition

components do not have to inherit a stub because the stub would be empty
anyway. The current version of WeaveJ still generates a stub even if it is not
needed.

It is also worth noticing that the stub does not declare to implement any
interface. Although, XYStub has everything needed to satisfy the interfaces
X and Y it does not implement these interfaces. This is in order to oblige
the programmer to explicitly specify which interface an implementation class
implements. Remember that when extending class, i.e. inheriting it, the in-
heriting class will also take over all interfaces the inherited class implements.

Naming and Placement of Generated Classes

During composition and stub generation WeaveJ generates additional class
files. WeaveJ takes special care not to overwrite existing classes and to ensure
unique names for the generated classes.

The names of the stubs and surrogates are determined by postfixing the in-
terface name with Stub or Inst respectively. Command line options control
whether WeaveJ’s GenStub mode places class files in a special shadow di-
rectory or in the directory of the current package. The directory structure
of the shadow directory parallels the package directory structure. Moreover,
the shadow directory must be listed in the classpath environment variable
for the other stages of the development process to find the generated classes.
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Section 2.6.3 made clear why classes need to be duplicated during the com-
position stage. How WeaveJ names and places the duplicates is best ex-
plained using an example. For this purpose I want to recycle figure 2.24
which shows the classes XYImpl, XImpl and YImpl composed through inher-
itance. It is very important to keep in mind that every class might also be
part of other compositions in which it inherits a different class generating
a different version of the class. Every such class must be named uniquely.
WeaveJ does so by postfixing the class name with the name of the class it
inherits. For the above example this means that YImpl is actually named
YImpl+XImpl and stored in YImpl+XImpl.class. Accordingly, XYImpl is
named XYImpl+YImpl+XImpl.

Although the separator “+” violates Java’s rules for class identifiers it can
still be used because this restriction is only enforced by the compiler whereas
WeaveJ operates on the byte-code level. Using an illegal character for sepa-
ration has the advantage of not interfering with non-generated classes.

If XImpl belonged to a different package than YImpl and XImpl, de.tub.test
for example, the name of YImpl would actually be

YImpl+de+tub+test+XImpl.class.

WeaveJ includes the package name only if the package of the prefix is different
to the package of the postfix.

2.6.9 Further Development

The next chapter demonstrates howWeaveJ can be used to implement a truly
reusable framework for graphical editors. Although, the current version of
WeaveJ is sufficient to prove the feasibility of such a framework, WeaveJ is
still a prototype which lacks many important features. I would like to discuss
the missing features briefly.

Size Optimization

I have shown that there are different possible serializations for any given
composition graph. Each serialization causes a different set of classes to be
duplicated. A possible optimization technique would select a serialization
such that the sum of the sizes of the classes in the duplication set is minimal.
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Transparent composition

In section 2.3.5 I have presented a model similar to WeaveJ which composes
class templates through parameterized inheritance. The GenVoca model has
symmetrical layers whose imported and exported interfaces are identical. In
WeaveJ this would manifest itself in components that can be transparently
inserted into the serialized composition graph.

Transparent composition could be used for a variety of purposes like debug-
ging support on behalf of the framework. The framework author would be
able to write debug implementations of some or all of the framework’s in-
terfaces. The debug implementation would write a message to stdout and
then forward the call to the real implementation. The client programmer
would then have the option of inserting a debug implementation before the
real implementation in the serialized composition graph.

Currently, something similar can only be done using inheritance between im-
plementations (section 2.6.4). This has the disadvantage that the program-
mer needs to specify the concrete parent class of the debug implementation.
With transparent composition the debug implementation of a particular in-
terface can be used for every implementation of that interface.

Naming

The naming convention for initializers (see 2.6.6) restricts the names of in-
terfaces to start with a upper-case letter. Alternatively, the name of the
initializer could be specified in the bindings file.

Furthermore, WeaveJ naming scheme for generated duplicates of class files
produces long class names (see section 2.6.8). The generated names may
exceed Java’s or the platform’s file name limits.

Ad-hoc Composition

Currently every component has to be listed in the bindings file because
WeaveJ only composes bound implementations and ignores all other classes.
Consequently, every component has to implement a particular interface. It
would be convenient if a class not listed in the bindings file could simply
specify one or more interfaces to be implemented by WeaveJ.
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2.6.10 Changes

The version 0.2 of WeaveJ underwent a few changes which I would like to
document here.

• Initializer naming convention has changed. The name initializer meth-
ods is identical to the name of the interface. This is more intuitive
because it almost looks like a constructor. It does not conflict with
the constructor because the return type of initializer methods is void.
Constructors do not have a return type at all.

• Class and interface naming convention has changed. Implementations
should not be suffixed with Impl anymore. The shorter suffix should
be used. Stubs are suffixed with $$ and surrogates are suffixed $.
This naming convention is less “noisy” and less likely to conflict with
application specific naming conventions. The statement

Foo foo = new FooInst()

is now written as

Foo foo = new Foo$()

• Initializer chaining has improved. An initializer may now forward to
another initializer of the same interface. The Check phase of WeaveJ
will not issue a warning anymore.



Chapter 3

The JDraw Framework

This chapter describes the design and implementation of JDraw, a prototypi-
cal framework for GUI applications written in Java. It is prototypical in that
it is far from being finished and in that it can be used as a site for further
experiments. But more importantly than that it proves the feasibility of the
concepts introduced in this thesis. JDraw shows how the WeaveJ tool (pre-
sented in chapter 2) can be used to develop application frameworks which are
more reusable than frameworks whose design focuses on single class inheri-
tance. It also features a flexible, intuitive and predictable layout algorithm
which is based on a simple and mechanical model.

3.1 Overview

At this point I would like to give a summary of the previous chapters. Chap-
ter 1 contains an analysis of current GUI toolkits and application frameworks.
It shows how class inheritance limits the framework author as well as the ap-
plication programmer who uses the framework. It also illustrates how Design
Patterns introduce another level of reuse: the reuse of concepts and designs.
The chapter concludes that pattern weaving, i.e. the ability of incorporating
more design patterns into the framework as it evolves is crucial for achieving
reusability.

The criticism of inheritance is not new. There are already alternative ap-
proaches, some of which are subject of chapter and 2. The latter also contains
an evaluation of traditional techniques to weave Design Patterns and it shows
their inadequacy for larger systems.
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When I started my work on JDraw I realized that a dedicated post-compila-
tion tool was needed to achieve a scalable and elegant way of pattern weaving
in the Java programming language. Consequently, I wrote the WeaveJ tool,
which is described in detail at the end of chapter 2. Having WeaveJ at hand,
I felt equipped well enough to write a GUI application framework.

The layout of visual languages such as UML diagrams or Petri-Nets is of
special interest in my group. Hence the layout algorithm is probably the
most advanced subsystem of JDraw.1 The layout subsystem was inspired
by UniDraw [VL90] and InterViews [LCI+92] (see chapter 1). It extends
UniDraw’s Connector-Glue model and merges it with InterViews’s Box model
which was in turn inspired by Donald Knuth’s TeX.

The problem with proving reusability is that it takes time. Almost every ap-
plication framework claims to be reusable. But this claim remains unverified
until several other people have actually tried to use the framework for their
applications and more importantly extended it. Since JDraw and WeaveJ
are not even close to being finished it would not be a good idea to use them
in real-world applications. On the other hand, adding new subsystems and
incorporating new Design Patterns into JDraw in the future should be easy.

3.2 Architecture

3.2.1 Motivation

The JDraw framework can be seen as a collection of subsystems. Using
pattern weaving reduces the dependencies between subsystems because the
functionality of the subsystems can be kept in separate classes. Java’s AWT
and Swing for example, both being single rooted class hierarchies, merge their
subsystems’ code in their base class Component or JCComponent. In JDK 1.3
the source for Component contains more than 5000 lines of code including
documentation and the compiled class file is 42k. Component incorporates
code for the following subsystems:

• layout and geometry,

• screen updating (background, font and visibility),

• event handling (mouse, keyboard and focus management) and

1Another reason why I focus on layout is my frustration with the layout implementation
in Java’s AWT and Swing.
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• component structure (parent-child hierarchy).

The main goal for the development of JDraw was not only to avoid over-
weight base classes (also see 2.3.4) like Component, but to avoid the idea of
base classes at all. In JDraw each subsystem comprises one or more key-
interfaces, each describing one particular aspect of component functionality.
The key-interfaces provide a facade2 for the other classes in that subsystem.
Sometimes the key-interfaces correspond to roles in design patterns. For each
key-interface there is at least one implementation class.

The most notable difference to traditional frameworks is that there is no
single component implementation in JDraw. Instead there are implementa-
tions of aspects of component functionality. It is the framework user, i.e.
the application programmer, who decides which aspects of component func-
tionality the application’s components should comprise. The WeaveJ tool is
then used to merge the aspect implementations, i.e. the classes implementing
key-interfaces.3

This has the following consequences:

• Not having to merge functionality into a single base class frees the
framework author’s mind. Dividing functionality into subsystems en-
courages separation of concerns.

• Subsystems can be added by anyone, not only the framework author.
The framework can evolve over time. Adding functionality is unlikely
to break existing application code.

• Application classes do not have to extend framework classes. This
makes the framework less obtrusive to the application architecture.

• The framework cannot be used without using WeaveJ. WeaveJ needs to
be learned and it restricts the use of integrated development environ-
ments or debugging tools. This is certainly a disadvantage but almost
all frameworks force the application programmer to use one particular
programming language.

One might ask, whether it is really necessary to use a proprietary tool like
WeaveJ to achieve an alternative object-oriented architecture. The answer

2Facade is the name of a design pattern [GHJV95] which hides the complexity of a
system of classes and objects behind an instance of a single class—the facade.

3“Merging aspects”, “weaving design patterns” and ”adding new subsystems” are dif-
ferent descriptions of the same thing: composition of features ([CE00]).
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depends on the implementation language and the size of the system. C++,
which has much more language features than Java,4 has alternatives to sin-
gle inheritance built in: parameterized and multiple inheritance. Both are
examined in chapter 2.

In small-scale systems overweight base-classes can be avoided by splitting
them up into multiple classes. But this technique does not really work for
larger systems like GUI toolkits or application frameworks. To illustrate that
I want to recycle the above example of AWT’s Component. The developers
of AWT could have split Component into a chain of several inheriting classes,
each implementing one of the aspects mentioned earlier. The disadvantage of
this method is that the aspects cannot be merged freely because the inheri-
tance relationships are predetermined. Supposed that the base classes in this
hypothetical AWT design were LayoutComponent ← VisibleComponent ←
EventComponent ← ChildComponent (arrows denote inheritance) it would
be impossible, for example, to have a child component that is not a visible
component. This is okay for small systems in which the number of aspect
combinations is limited and predictable. Another serious disadvantage of
single inheritance designs is that no one other than the framework authors
can add new aspects (see section 1.2.2).

3.2.2 The Subsystems

As mentioned before, JDraw’s architecture is split into subsystems. Each
subsystem focuses on one particular aspect of component functionality. Fig-
ure 3.1 shows the subsystems necessary to get roughly the same features as
in current frameworks like JFC (Swing).

The layout subsystem calculates the geometry (size and position) of compo-
nents based on the assumption that they have rectangular bounds. It consists
of the more lower level abstraction of Rulers and Links (a in-depth descrip-
tion of each subsystem follows in later sections). Rulers are connected to
each other through links. Thus rulers form a network in which their relative
position to each other is constrained by links. On top of that level rests the
Box abstraction. Box is one of the key-interfaces of the layout subsystem.
Box does not completely hide the lower level but makes managing rulers and
links much easier. Because of that it can still be seen as an instance of the
Facade design pattern.

The appearance subsystem takes care of how components draw themselves. It

4which, on the other hand, is missing crucial features like support for garbage collectors
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Figure 3.1: JDraw’s current and future sub-systems.

defines the two key-interfaces Glyph and Surface. Glyphs can render them-
selves on a Surface. Obviously, any rendering presumes knowledge about
geometry. This is why the appearance and the layout subsystems have to
collaborate intensively. This collaboration manifests in the merger-interface
GlyphBox which merges the Glyph and Box functionality. Any visual com-
ponent which wants to be laid out by the layout subsystem and render itself
using the appearance subsystem should incorporate GlyphBox functionality.

GlyphBox provides a good opportunity to summarize WeaveJ’s working principle.

Remember that for every interface there is at least one implementation class. Con-

sequently, there is a Box and a Glyph implementation, namely Glyph and Box .

The merger interface GlyphBox extends Glyph and Box (note that for interfaces

Java does allow multiple inheritance). It also adds some more functionality. The

implementation of the GlyphBox interface is done by the class GlyphBox . It is

important to understand that GlyphBox does not have to re-implement Glyph

or Box functionality. Instead WeaveJ automatically composes all three classes

through inheritance such that GlyphBox has Glyph’s and Box’s functionality at

its disposition. This can be done in two different ways: a) GlyphBox extends

Glyph which extends Box or b) GlyphBox extends Box which extends Glyph .



116 CHAPTER 3. THE JDRAW FRAMEWORK

The consistency, history, properties and interaction subsystems, which are
outlined in the following paragraphs, are not yet implemented.

Section 1.1.3 on page 5 explains why a framework should incorporate some
means of retaining the consistency between an application’s internal data
structures and their external representation. This is the domain of the con-
sistency subsystem which is based on the Observer design pattern. One of
the first appearances of this pattern can be found in UniDraw [VL90] which
is described in section 1.3.1 on page 12. In JDraw, the registration and noti-
fication of views is taken care of by the Subject implementation Subject .
Any application class, whose instances make up an applications internal data
should incorporate the Subject functionality. For every application specific
subject there should also be at least one application specific view. The view
uses one any of the built-in components (see below) or application specific
components to define its behaviour and appearance.

The history subsystem manages snapshots of object state according to the
Memento pattern. This provides applications with some kind of Undo mech-
anism which is considered a standard feature of todays applications.

The interaction subsystem is responsible for mouse and keyboard interaction.
The related patterns are Command and Chain-Of-Responsibility. How this
is supposed to work is best explained using an example. When the user clicks
a mouse button, the interaction subsystem notifies all listeners. Suppose the
listener is some kind of Box. It can then use the Box.bounds()method to test
whether the cursor position is within its own bounds. If the cursor position
is within the listeners bounds it will handle the mouse click in whatever way
it likes. If the cursor position is outside the listeners bounds it will forward
them to the next listener.

The properties subsystem manages the components properties. The idea of
putting this component aspect into a separate subsystem is borrowed from
the InterViews toolkits decouples the properties from the components. For
a motivation of this refer to section 1.4.2.

3.2.3 Built-in Components

A GUI application framework isn’t worth much if it does not offer actual com-
ponents like text-labels, buttons, text-fields and the like. Currently JDraw
has text-labels, beveled-borders, simple-borders and filled rectangles.

The term component is used in this context synonymously for user-interface-
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control. I prefer the term component because a) AWT and Swing use this
term and b) it emphasizes the fact that components are composed of other
component. There are two different kinds of composition in JDraw: class
composition and object composition. The class composition is done by the
WeaveJ tool as explained earlier. Object composition is best explained using
an example. This is the source for the Button interface:

public interface Button extends Box {

void Button( Surface surface, String label );

void text( String text );

String text();

}

We can see that a Button is a Box and that can be created by passing a surface
and a label for the button. This is the source for the Button implementation:

public class Button_ extends Button$$ implements Button {

private Label label;

public void Button( Surface surface, String label ) {

Box();

this.label = new Label$( surface, label );

enclose(

new Border3D$( surface,

new Border$( surface, 3, this.label )

)

);

}

// ... more methods ...

}

Have a look at the initializer method Button. The first action it does is to
forward to the Box initializer. It then creates a new text-label object and
stores a reference to it. After this it creates a border object to which it passes
the label object. This is because a border should decorate the label. Finally
it calls the enclose() method in Box which ensures that the button’s bounds
are identical to the border’s bounds (figure 3.2.

The result is a button object which decorates a border object which decorates
a label object. This is object composition. But there is also class composi-
tion: The Button interface extends the Box interface. This causes WeaveJ
to compose the implementation class Button with the implementation class
Box such that the former directly or indirectly inherits the latter.
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Figure 3.2: Class diagram (left) and layout structure (right) of a button.

One more point is worth noticing. The Button interface extends the Box

interface. But a box has no means of rendering itself onto the screen. How
can the button be visible if it can’t be drawn? The answer is that it doesn’t
need to. All rendering is done by the border and label component. These are
GlyphBox extensions as can be verified by looking at their interface sources:

package de.tub.jdraw;

public interface Border3D extends GlyphBox {

void Border3D( Surface surface, Box box );

}

package de.tub.jdraw;

public interface Label extends GlyphBox {

public void Label( Surface surface, String text );

public void text( String text );

public String text();

}

3.3 The Layout Subsystem

In GUI applications there are many different ways of laying out components.
The most rudimentary way is to have the application programmer hard-code
a components’ absolute coordinates. Obviously, this is a tedious and non-
intuitive task. There are two common solutions to this problem. One is



3.3. THE LAYOUT SUBSYSTEM 119

interactive component layout in which the programming environment (IDE)
sports some kind of form-designer. The application programmer uses the
form designer to place and size components interactively. However, absolute
layouts, even if they are generated interactively, do not adjust well to varying
display hardware.

The other approach is to have the application compute the layout. This is
done based on constraints which can be either implicit to components or
specified explicitly by the programmer. Examples for such constraints are:
“This component is below that component” or “This component must be at
least 42 pixels wide” or “This component should be twice as wide as that
component” or even “This component must not overlap that component”.
The set of constraints and the set of components form a system which has to
be solved rather quickly to allow the user to adjust the layout interactively,
e.g. to resize forms or to drag the splitter bar in split windows. Therefore,
the framework designer has to find a trade-off between the universalness of
the constraints and the time it takes to solve them.

JDraw’s layout subsystem has the following attributes: it is flexible, pre-
dictable and intuitive to use.

Flexibility: JDraw’s layout abstraction is general enough to cover all of the
above ways of component layout. It can be used to specify intra-component
constraints (constraints implicit to components) as well as inter-component
constraints.

Predictability: With increasing complexity of constraint systems the layout
mechanisms of some traditional GUI toolkits show unexpected behaviour.
This is mainly due to an incorrectness of the layout algorithm. Often the
algorithm is only applicable to special cases of constraint configurations.
JDraw’s layout subsystem is based on a very simple but general model which
makes it easy to predict its behaviour.

Intuitiveness: GridBagLayout, AWT’s and Swings’s most powerful layout
model uses seven parameters in each dimension to constrain the layout.5

Specifying these parameters in an application often turns into a trial-and-
error process. The existence of several different layout models amplifies this
problem. JDraw has a single type of constraint which covers everything:
the link. Links are analogous to mechanical springs that can be expanded
and compressed up to a certain length. I claim that a mechanical model
like this makes specifying layout constraints much more intuitive. How-
ever, whether something is intuitive or not depends on individual experience.

5grid-coordinate, grid-width, fill, pad, insets, anchor and weight
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For a description on how JDraw’s layout subsystem can be used to emulate
GridBagLayout see the text-frame on page 149.

JDraw’s layout subsystem takes care of computing the geometry of compo-
nents. It is not directly responsible for rendering components although a
change in a component’s geometry will most likely trigger a re-rendering in
the appearance subsystem. The collaboration between these two subsystems
is subject of section 3.4.

The layout subsystem is divided into two layers. The lower level layer is built
around the abstraction of rulers and links. The higher level Box abstraction
utilizes rulers and links to define the location and size of boxes (figure 3.3).

Figure 3.3: Layout elements: rulers, links and boxes.

3.3.1 Rulers and Links

A ruler stands for a value in 1-dimensional discrete space. Whether this value
is a x- or a y-coordinate is irrelevant at least at this level. The interpretation
of the ruler’s value is left to higher layers. The Box layer, for example,
knows which ruler needs to be interpreted as a x-coordinate (vertical ruler)
and which one needs to interpreted as a y-coordinate (horizontal ruler). A
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box uses vertical rulers for its left and right edges and horizontal ones for the
top and bottom edges.

A link represents a connection between two rulers constraining their relative
distance to each other. The distance of two rulers connected through a link
is identical to the length of the link. Links and rulers form a network. The
process of solving the network results in a discrete value for the length of
each link and thus the relative position of each rulers. The rulers’ absolute
positions in the network can be determined afterwards based on the link-
lengths and the assignment of the value 0 to a single arbitrary ruler—the
anchor.

For now, links can be seen as mechanical springs spanned between rulers.
This physical analogy is one of foundations for the intuitiveness of JDraw’s
layout model. A mechanical spring has a well-defined dependency between
its length s and the mechanical force F . This dependency, also known as
the characteristic s-F -curve is an inherent attribute of each link. For ideal
springs this curve is a linear function whose slope is defined by the strength
of the spring. The point in which this curve intersects the s-axis (F = 0)
defines the natural length of the spring. The curve is descending to correctly
represent the direction of the force. If the spring is expanded beyond its
natural length, the force will be directed opposite to the s-axis. Hence, the
force is negative for any length greater than the natural length. If the spring
is expanded to lengths shorter than its natural length, the resulting force will
be directed as the s-axis.

Consider two mechanical springs whose ends are tied together as shown in
figure 3.4e. They form a parallel combination in which both springs will
influence each other’s lengths. The combination of both behaves like one
single equivalent spring whose strength is the sum of the original springs’
strengths. I will give a more precise description of the equivalent spring’s
properties shortly.

Within JDraw the term link is used instead of spring because links feature
a more generalized representation of the s-F -curve which covers more than
what can be described using the spring analogy. Also, the term link stresses
on the fact that they are connections between rulers.

The s-F -curve of unlimited links extends indefinitely in both directions of
the s-axis. Their curve is defined for all s-values. Links can optionally be
limited ; that is, their length can only vary within certain limits. The curve
of limited links is only defined for s-values within the limits. A spring which
has a minimum (maximum) length and which can be expanded (compressed)
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Figure 3.4: Parallel combination of two springs. Picture a) and b) shows the
two springs in their natural (relaxed) state, diagrams c) and d) shows their
s-F curve, picture e) their parallel combination (also in its relaxed state) and
diagram f) the s-F -curve of the equivalent spring.

indefinitely is called a min-link (max-link). JDraw represents infinity with a
dedicated value which is very large compared to common display dimensions.

The terms compression and expansion may be misleading in this context.
JDraw uses a signed value to represent lengths. Therefore, s-values can also
be negative. A link whose length is smaller than the link’s natural length is
considered compressed even if the current length is negative and its absolute
value is greater than the absolute value of the link’s natural length. In other
words, a link is considered compressed (expanded) if it causes a positive
(negative) force.

The force of a constant-link does not depend on its length. The corresponding
s-F -curve is a horizontal line; that is, its slope is zero. A force-less link is
a constant link which carries no force at all and is represented by the curve
F = 0. A fixed link does not have any degree of freedom at all. Its length and
force are fixed. The corresponding s-F -curve degenerates to a single point.
The mechanical analogy to a fixed spring is a strut. Figure 3.5 shows some
common s-F -curves.

I have shown that parallel combinations of two links can be reduced to a
single equivalent link but I have not yet given a formal definition of how the
equivalent s-F -curve can be determined given the curves of the two parallel
links. The equivalent curve of to parallel links can be computed by adding
the forces (F -values) of both original curves point-wise. This can be verified
intuitively by picturing two identical springs—it needs twice the effort to
expand both springs in parallel as it needs to expand just one.
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Figure 3.5: Common types of links.

Likewise, the equivalent curve of a series combination of two links as shown
in figure 3.6 can be computed by adding the lengths (s-values) of the two
original curves point-wise.

Figure 3.6: Serial combination of two springs.

Intuitively, it is obvious that the length of the equivalent spring in a series
combination is the sum of the lengths of the original springs. It may not be
obvious at first that their forces do not add. Imagine a physical experiment
in which a weight is hanging on one end of a spring whose other end is fixed.
The weight’s gravitational force elongates the spring according to the spring’s
strength. Now imagine that the weight is attached to a series of two springs
of the same kind. Each spring’s length will be identical to their length in the
single-spring configuration. This shows that both springs are subject to the
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same force.6

Series and parallel combinations of more than two links can be reduced it-
eratively by reducing the first two links to one link and then combining the
result link with the third one and so on.

Figure 3.7 shows examples of series and parallel combinations. Diagram d
and e in this figure are of special interest. Diagram d shows a series of two
links in parallel with a parallel combination of two links; that is, diagram d
shows the parallel combination of the links in diagrams b and c. The link in
diagram b has much narrower limits than the one in diagram c. The parallel
combination of both has the same limits as the link in b. One observes that
the equivalent curve of any parallel combination is only defined for s-values
at which all of the participating links are defined; that is, the range of the
equivalent curve is the intersection of the ranges of the participating links.

Diagram e shows a series combination (the one of diagram c) in series with a
parallel combination (the one of diagram b). What makes the curve in this
diagram special is that it consists of multiple segments. This can also be
explained intuitively: Remember that the series combination of two springs
(as in c) is weaker than each original spring (a) and of course much weaker
than their parallel combination (b). If one expands the series combination
of b and c, c will expand more than b because c is much weaker than b.
Therefore, c will reach its limits earlier than b. After c reaches its limits, b
is the only spring that can be stretched further. Spring b is stronger than c
and so it will require more effort to do so. This is why the last segment of the
curve is steeper than the middle segment. The same applies to compression.

3.3.2 Solving the Network

So far I have shown what links and rulers are and how series and parallel
combinations of links can be reduced to single equivalent links. This section
is about the solution of the entire network. The goal in solving the network
is to determine the length of all links. The solution algorithm can be divided
into two phases. During the first phase the network is reduced in order
to simplify the problem. Only when the network is reduced to a certain
configuration (dangling link, see below) it is possible to determine the length
of the remaining link. This is because all the links that influence each other’s
lengths are combined in a single equivalent link. The second phase determines

6The equivalent spring is actually weaker than the original ones because the same force
leads to twice the elongation.
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Figure 3.7: Serial and parallel combinations of links: a) the original link and
its s-F -curve, b) the parallel combination of two such links, c) two such links
in series, d) b and c in parallel and e) b and c in series.
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the length of each link as the network is reconstructed to its original form.

Reducing the Network

The reduction phase of the algorithm consists of the following steps.

1. If the network consists of just one ruler, the reduction is finished. Oth-
erwise, proceed with the next step.

2. Scan the network for series and parallel combinations and for dangling
links.

3. If one of the above combinations can be found, reduce it. Otherwise
the network is structurally unsolvable. Before eliminating a dangling
link determine its length.

4. Goto step 1.

Figure 3.8 shows the reduction of a simple example network. It also in-
troduces a graph notation more suitable to this level of consideration. In
this notation rulers become the nodes of a undirected cyclic graph and links
become the arcs7 between the nodes.

Figure 3.8: Reduction of a network and the equivalent graph notation.

Using the graph notation it is easy to identify series combinations of links as
well as dangling links. A dangling ruler is defined using the graph notation
as a node with just one arc. This arc represents the dangling link. A node
with exactly two arcs represents the middle ruler in a series combination of
two links. A dangling ruler and its link can be reduced by simply removing
them from the network. A series combination is reduced by removing the
middle ruler in conjunction with its two links and connecting the equivalent
link between the two outer rulers. Figure 3.9a and b depict the reduction of
dangling links and series combinations of links.

7The term edge is already occupied to describe the boundaries of a box.
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Figure 3.9: Reduction of a) a dangling ruler, b) a series combination without
an existing parallel link and c) with an existing parallel link.

In order to optimize the reduction process, parallel links are not stored as
distinct arcs. Instead, parallel links are combined to one equivalent link as
soon as the network is constructed; that is, the links are bundled. During the
solution of the network this equivalent link is used. The equivalent link has to
be updated only when one of the links in the bundle is changed or when links
are added to or removed from the bundle. The bundling of links is possible
because the reduction of parallel combinations of links is structurally neutral
since it does not involve the elimination of rulers.

A parallel combination can still occur as a result of the reduction of a series
combination. When eliminating a series combination, the algorithm has to
check whether there is already a link connecting the two outer rulers of the
combination as shown in figure 3.9c.

At times there are multiple possibilities to reduce a particular network struc-
ture. For example, the series combination in figure 3.10 can also be regarded
as two dangling links. Some reductions are more expensive than others and
the algorithm tries to pick the less expensive one.

Computing the Lengths

Whenever a dangling link is eliminated the algorithm determines this link’s
operating point. The operating point of a dangling link is defined as the
s-F -point in the link’s s-F -curve which has the least absolute force (see
figure 3.11).

Note that a dangling link may be the result of the reduction of a whole sub-
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Figure 3.10: Two ways to reduce a series combination.

Figure 3.11: The operating points of dangling links whose curve does (a) and
does not (b and c) intersects the s-axis.
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network. A sub-network is defined as the maximum set of connected nodes
which is connected to the remainder of the network through exactly one arc.
For example, the network in figure 3.12 consists of two sub-networks. All
links in a sub-network are related; that is, they affect each other’s length.
The length of links belonging to different sub-networks is not related. After
all related links are reduced to a single equivalent dangling link it is possible
to compute the sub-network’s operating point. The operating point of the
original links can later be induced from their sub-network’s operating point.
After the last remaining dangling link is eliminated, the network consists of
a single ruler and the reduction phase is finished.

Figure 3.12: Reduction of a more complex network.

The algorithm’s second phase reconstructs the network. Eliminated rulers
and links will be put back into their original position. When a series or
parallel combination of links is reconstructed, the algorithm will use the
operating point of its equivalent link to compute the operating points of the
original links. The length of a link is defined as the s-value of its operating
point.

The operating point of links in a parallel combination will be determined by
searching the s-F -curves of the original links for the s-value of the equivalent
link’s operating point. Likewise, the operating point of links in a series
combination can determined by searching for the F -value of the equivalent
link’s operating point. Figures 3.13 and 3.14 illustrate what can also be
verified using the spring analogy. Springs in a series combination are all
subject to the same force whereas parallel springs have the same length.
The process of computing the operating point of links is also referred to as
link-settling.

The reduction of the network is a destructive operation. It removes rulers
and links from the network or replaces links with new ones. This brings up
the question of how the network is reconstructed. So far the algorithm was
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Figure 3.13: The operating point of a parallel combination of links. The
diagrams contain the s-F -curve of a) the equivalent link and b) and c) the
original links.

Figure 3.14: The operating point of a series combination of links. The di-
agrams contain the s-F -curve of a) the equivalent link and b) and c) the
original links.
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described as being divided into two iterative phases. The real algorithm is
recursive. Whenever the network is modified, the affected links and rulers
are stored in local (automatic) variables and recursion starts all over. Upon
return from each level of recursion, the original state of the network is recon-
structed using the state saved in these variables. This mechanism effectively
uses the call-stack to save the necessary undo information. Nevertheless, the
algorithm can still be described as being two-phased. The reduction happens
during the descending phase of the recursion while the reconstruction and
link-settling is done during the ascending return phase.

Eventually, the network is reconstructed to its original state and the oper-
ating point, i.e. the length of every link is known. In order to determine
the absolute position of each ruler, i.e. its distance to the anchor ruler, an
additional traversal of the network is needed.

Termination

The algorithm terminates with three possible results:

• The network was solved.

• The network is combinatorially unsolvable.

• The network is structurally unsolvable.

Combinatorial un-solvability occurs when parallel links with incompatible
limits are detected. Remember that the range of the s-F -curve of a parallel
combination’s equivalent link is the intersection of the original links’ ranges.
If the intersection is empty, i.e. if the ranges of the original links do not
overlap, the parallel combination is undefined.

The chance of structural un-solvability results from the limited set of combi-
nations that the algorithm can reduce. Speaking in graph-theoretical terms,
the algorithm is able to eliminate nodes with a degree8 of 1 (dangling rulers)
and 2 (series combinations) but not more. The simplest structurally unsolv-
able network is the complete graph of the third degree, i.e. the smallest
possible graph that only has nodes of degree 3 (see figure 3.15).

In order to analyze structural unsolvability further, a short excursion into
the field of electrical circuits is necessary. So far I have only mentioned
the mechanical analogy to layout networks in which links are represented

8number of arcs
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Figure 3.15: Structurally unsolvable graphs of a) and b) third degree and c)
fourth degree. Graph b is just a different way of drawing graph a.

by mechanical springs. On the other hand, the terms “series” and “paral-
lel combination”, “characteristic curve” and “operating point” indicate that
there is another physical analogy.

Links can also be regarded as resistors in an electrical circuit in which the
rulers represent the wiring between them. Resistors have a linear character-
istic U -I-curve just as springs have a linear s-F -curve. Even the laws for
calculating the total resistance of a series or parallel combination of resistors
are similar. One important difference between these analogies is that a se-
ries combination of springs may result in a multi-segmented equivalent curve
whereas the U -I-curve of a series of resistors is always a single line.

For resistors there is a law which describes how to convert triangle- to star -
combinations of resistors and vice versa. This may indicate that there is a
similar law for springs. The above mentioned difference between the series
combination of resistors and that of springs suggests that this law cannot be
translated directly. If such a law existed, it could be used to eliminate the
middle ruler in figure 3.15b.

The UniDraw [VL90] framework treats the glue (the equivalent of JDraw’s links)
as resistors in an electrical circuit. The advantage of this approach is that the
laws for the conversion of series, parallel, star and triangle combinations can be
directly translated into the layout algorithm. UniDraw’s layout solver is more
versatile than JDraw’s because it is able to process more complex structures.

The problem with this approach is that the electrical analogy is less intuitive than

the mechanical one. Imagine a limited force-less link in series with a limited force-

ful one. When this series combination is expanded, one would intuitively expect

that at first the force-less link stretches while the forceful one remains relaxed.

Only after the force-less link reaches its limit, the forceful one would begin to

stretch as the expansion continues. JDraw implements this kind of behaviour cor-

rectly.
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Fortunately, such unsolvable structures do not occur very often in real appli-
cations which is why I think that JDraw’s approach presents a good trade-off
between intuitiveness and versatility.

3.3.3 Implementation Issues

The previous sections have described the layout solution process from a more
general and algorithmic point of view. It is also interesting to have a closer
look at the implementation of the algorithm. Rather than describing the
implementation at the level of methods and classes, I want to explain the
data-structures, optimization techniques and some numeric effects related to
the algorithm.

Traversal of Cyclic Graphs

Any algorithm that performs a recursive traversal of a cyclic graph has to
detect these cycles in order to prevent infinite recursion. The usual method
to do so is to use a boolean flag for every node. This approach only works
if it is guaranteed that all the nodes are visited during the traversal. Only
in this case the next run of the algorithm can assume all marks to be in a
uniform state. Traversing the graph beforehand in order to reset all flags
turns out to be tricky because this traversal has to detect cycles too.

JDraw’s layout solution algorithm cannot guarantee that the traversal visits
every node. It cancels the traversal as soon as it finds a reduce-able combi-
nation. Hence, JDraw uses a integer number instead of a boolean flag. The
version number is incremented before the traversal and every node with a dif-
ferent version number is considered unvisited. This way it does not matter
whether the node was visited during the last traversal.

At this point, the overall description of the layout solution process is com-
plete. The following sections cover some implementation issues without get-
ting into the details.

Lazy Reduction

Lazy reduction is an optimization technique employed by the reduction algo-
rithm. I would like to give a brief motivation for this optimization technique.
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Unlike mechanical springs, links are directed; that is, they have a designated
start and end. Using directed links and signed values for the length s and the
force F avoids ambiguities in the solution process. If links were undirected,
there would always be two possible solutions for any series combination as
shown in figure 3.16. In order to correctly denote a link’s orientation, the
graph notation has to be extended such that arcs are depicted as arrows.

Figure 3.16: Two possible solutions for a series combination of undirected
links.

The reduction of series and parallel combinations defined earlier in this sec-
tion is only applicable when the combined links co-directed, i.e. when they
have the same orientation. In case they are not co-directed, one of them has
to be inverted. The inversion of a link mirrors its s-F -curve by the negating
every point’s s- and F -value.

It is easy to construct cases in which a single oppositely directed link in a
network of otherwise co-directed links can cause repeated inversion during
the network’s reduction (figure 3.17a).

Figure 3.17: Reduction of a network with a single anti-directed link. The
eager reduction in a) needs three inversions. The lazy reduction b) does not
need any inversions.

Networks like the one in figure 3.17a are common in real-world layouts. It
is therefore strongly recommended to avoid the inversion of links if possible.
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Initially, the reduction is lazy; that is, only combinations of co-directed links
are reduced. The example in figure 3.17b shows that lazy reduction skips
the elimination of the left-most ruler because its links are not co-directed.
The lazy reduction does not involve any inversions at all. Evidently, skipping
anti-directed links takes less time than repeatedly inverting them. In case no
reduce-able combinations can be found lazily, the algorithm becomes eager
and remains so until the network is solved or its un-solvability is detected.

The Box layer, which will be examined in the next section assists the appli-
cation programmer in creating networks in which most links are co-directed.
In these networks lazy reduction prevents the inversion of links completely.

Data Structures

One of the design decisions I made during the development of JDraw is
not to use any of Java’s built-in container classes for the basic layout data
structures but to implement the data structures manually. This has the
following reasons:

• The number of objects used in the layout layer is relatively large. Most
built-in containers create an additional object for every object they
hold. For example, a LinkedList creates a node object for every user
object in the list.9

• Many of the data structures used for the layout algorithm are list-
like and traversed in one direction only. Lists are easy to implement
manually.

• The layout algorithm has to be fast to allow for interactive manipu-
lation of layouts, like resizing windows. Manually implemented data
structures are fast because they can be tailored to the needs of the
algorithm.

• Manually implemented data structures are dangerous. They are not
encapsulated, have wide interfaces and only work in a very specific
context. It is acceptable to implement the data structures manually as
long as these draw-backs do not intrude the upper layers. The layout
layer of rulers and links is like a black box. None of the internal data
structures are exported to the upper layer.

9ArrayList is an exception for that it uses an array to hold the user objects. On the
other hand, this array is usually larger than the number of user objects in the list.



136 CHAPTER 3. THE JDRAW FRAMEWORK

Two of the layout data structures are of particular interest and will be ex-
amined below:

• the curve data structure which holds the s-F -curve of the links and

• the graph data structure which represents the network of rulers and
links.

The Curve Data Structure

The s-F -curve of links is represented as a singly linked list of s-F -points.
A s-F -point is a tuple (s, F ). The points in the list represent only samples
of the s-F -curve. The curve’s segments between the samples is assumed
to be linear. Thus, any s-F -point between the samples can be interpolated
linearly using the two neighbouring samples. This representation implies that
the samples are sorted by their s-value. This s-order is one of the central
invariants.

The following operations need to be performed on s-F -curves:

• computing the s-sum of two curves, i.e. adding the s-values of the
points in the curves (for the reduction of series combinations),

• computing the F -sum (for the reduction of parallel combinations) and

• looking up the F -value for a given s-value and vice versa (for finding
the operating point of a link).

The first two operations produce a new list. Assuming s-order, the F -sum
can easily be computed by iterating over the two lists simultaneously, i.e.
managing two current sample points at the same time. The current sample
with the smaller s-value is chosen and the other curve’s point at the chosen
s is interpolated. The F -values of the sample and the interpolated point can
then be added yielding the result point. Finally, the variable holding the
chosen sample is advanced to the next sample.

When computing the s-sum, another invariant needs to be established: the
F -order. If the samples in the list are sorted by their F -values, the s-sum
can be computed in very much the same way as the F -sum.

Both invariants in conjunction restrict the set of links that can be processed
by the layout algorithm to either
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• the set of links with monotonously increasing s-F -curves or

• the set of links with monotonously decreasing s-F -curves

Monotonously increasing links are active links whose effect is interesting but
hard to grasp intuitively. Consequently, JDraw uses the set of monotonously
decreasing links. The key observation is that this restriction makes all oper-
ations on curves O(n), where n is the number of samples in the curve.

One reduction step is O(m) where m is the number of nodes in the graph, i.e.
rulers in the network. This is because in the worst case the entire network
needs to be scanned for a reduce-able combination. Since every reduction
step reduces one node, the reduction is finished after m steps. This makes
the entire algorithm O(m2 ∗ n) under the assumption that the number of
links is in the order of the number of rulers, i.e. that the graph is sparse.
This assumption will be justified in section 3.3.4.

The Graph Data Structure

There are two standard ways to implement a graph: adjacency lists and
adjacency matrices. For sparse graphs—and the layout network is sparse—
using the adjacency matrix representation is not recommended because many
of the matrix cells will be unused. Therefore, JDraw uses a data structure
similar to adjacency lists.

The problem with standard adjacency list implementations is that the arcs
in an undirected graph usually have to be represented using two symmetric
adjacency list entries. Figure 3.18 shows an undirected graph fragment and
its symmetric adjacency list representation. The redundancy of two entries
wastes

• storage space because it doubles the number of necessary objects and

• running-time because two lists have to updated when the graph is mod-
ified.

The first option to reduce this overhead is to simply drop one of the references
as shown in figure 3.18c. This solution saves space but needs two iterations
to find out whether two nodes in an undirected graph are connected.

The solution implemented in JDraw merges the two list entries into one,
halving the number of necessary objects. There is one adjacency entry per
arc which is why I will refer to these entries simply as arcs.
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Figure 3.18: Adjacency lists: a) a graph fragment, b) its symmetric adjacency
list representation and c) the asymmetric list representation. Circles denote
nodes and rectangles denote the adjacency list entries. Arrows symbolize
object references.

Figure 3.19: Parameterized adjacency lists.
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An entry in the standard adjacency implementation has two attributes: a
reference to the graph node and a reference to the next entry. The arcs in
the alternative solution have four attributes. This can be made plausible by
thinking of arcs as having two ends: a major and a minor end. The arc holds
node and successor references for each of its ends. This leads to the four
attributes majorNode, minorNode, majorNext and minorNext.

Rather than accessing these attributes directly, they are read and written
through accessor methods. For standard adjacency lists these methods would
look like this:

Node to() { ... } // gets the node reference

void to( Node to ) { ... } // sets the node reference

Arc next() { ... } // gets the successor reference

void next( Arc arc ) { ... } // sets the successor reference

In the alternative solution all these methods have an additional parameter
which is why I refer to this solution as parameterized adjacency list.

Node to( Node from ) { // gets the node reference

if( from == majorNode ) {

return minorNode;

} else {

return majorNode;

}

}

// sets the node reference

void to( Node from, Node to ) { ... }

// gets the successor reference

Arc next( Node from ) { ... }

// sets the successor reference

void next( Node from, Arc arc ) { ... }

Numerical issues

Links can be limited or unlimited. The s-F -curve of unlimited links extends
into infinity. Infinite values can cause problems when they occur in arithmetic
operations. Therefore, unlimited links are represented as limited ones with
very large limits—large compared to standard display dimensions in pixels.
The other option is to represent infinity as a dedicated value and make all
necessary arithmetic operations handle infinity specifically.
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The advantage of simply using large values for infinity is that arithmetic op-
erations do not have to treat infinite values in a special way, provided that
there is enough headroom. The headroom is a range of numbers reserved for
the results of inflationary operations. An arithmetic operation applied to infi-
nite arguments may yield an even greater result as long as the result is within
the headroom. The current value for infinity is ±(215 − 1) = ±32.767. The
necessary amount of headroom depends on the operations being used. Mul-
tiplication needs much more headroom than addition. Fortunately, addition
is the only inflationary arithmetic operation used in the layout algorithm.
Given the above definition of infinity, using signed 32-bit integers provides
31− 15 = 16 bit of headroom.

The available headroom constrains the maximum length of chains of series
combinations of unlimited links. This is because the s-F -curve of unlimited
links ranges from s = −∞ to s = +∞ and the reduction of a series combina-
tion adds their s-values. The equivalent link of a series combination of two
unlimited links ranges from s = −2 ∗ ∞ to s = +2 ∗ ∞. A headroom of 16
bits allows for chains of 216 unlimited links. This seems to be a lot but the
headroom has to be reduced for reasons explained shortly.

Arithmetic calculations with s- and F -values occur frequently throughout the
solution of the network. Some of these calculations involve a division. For
example, determining the operating point of a dangling link means finding
the point in which the link’s s-F -curve intersects the s-axis. If this point lies
between two samples, it can be determined using the following interpolation:

s1 +
s2 − s1

F2 − F1

∗ F1

.

Obviously, dividing integer numbers can lead to non-integer (fractional) num-
bers. The following techniques can be used to deal with this in a computer
program:

• simply accepting the lack of precision,

• using floating-point operations and floating-point variables,

• using floating-point operations in conjunction with integer variables
and rounding the result of the floating-point operations to the nearest
integer or

• using fixed-point numbers and operations.
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The IEEE floating-point standard distributes the discrete floating-point val-
ues non-uniformly across the total range. With single-precision (8-bit expo-
nent, 23-bit mantissa) floating-point numbers, there are 223 discrete values in
the interval [1, 2) = [20, 21) but as many values in [223, 224). This means that
the resolution is 1 in the interval [223, 224) and 2 in the next interval [224, 225)
in which only every second integer value is represented. Starting with this
interval, the resolution of floating-point numbers is worse than that of 32-bit
integer numbers.

A resolution worse than one (≥ 1) introduces an error into the layout com-
putation. Experiments have shown that this error increases throughout the
reduction of the network and that it influences the quality of the solution.
Because of that, the headroom has to have a resolution of 1 and the range of
numbers greater than 224 (for single-precision numbers) cannot be used for
the headroom. Using ±(215−1) to represent infinity gives 23bit−15bit = 8bit
of single-resolution headroom.

Fixed-point numbers use a fixed number of bits for the fraction. The ad-
vantage of the fixed-point representation is that one can use fast integer
operations and integer variables to store the numbers. The layout algorithm
uses 32-bit fixed-point arithmetic with 8 bits of fraction. This effectively
reduces the headroom to 16 − 8 = 8 bit which is the same as with 32-bit
floating-point numbers. This means that fixed- and floating-point numbers
are equivalent as far as the amount of headroom is concerned. On the other
hand, fixed-point arithmetic is as fast as integer arithmetic and thus faster
than floating-point arithmetic.

It needs to be stated that the fixed-point format is used internally only. The
upper layers of the layout subsystem deal with non-factional numbers; that
is all external layout coordinates are discrete pixel values. For example, the
external pixel coordinate 1 is represented as 1<<8, where << is the binary
shift operation and 8 is the number of fraction bits.

Constant Link Ambiguities

The last issue I want to describe briefly is related to constant links. Constant
links and force-less links in particular are used in the Box layer to constrain
the size of boxes without adding a force to the network. Text labels, for
example, should never be smaller than the width and height of the text they
contain. This can be enforced by using a force-less min-link (see figure 3.5
on page 123) constraining the width and height of the label.
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Constant links introduce ambiguities into the layout algorithms. In a series
combination of two constant links their length (operating point’s s) can be
chosen arbitrarily as long as the sum of their lengths is equal to the length of
the combination’s equivalent link. An example of this is shown in figure 3.20.
The operating point of a series combination’s equivalent link in figure 3.20c
is at (20, 0). The figure shows two of the many possibilities to choose the
operating points of the original links: 8 + 12 = 20 and 5 + 15 = 20.

Figure 3.20: Constant link ambiguity: a) and b) the s-F -curves of two links
with a constant segment in them and c) their series combination’s s-F -curve.

The ambiguity can be resolved by prioritizing the links using an asymmetry
found in series combinations of co-directed links: one of the links is incoming
whereas the other one is outgoing. Consider the the series combination in
figure 3.21c. Link α is incoming and link β is outgoing. When determining
the operating points of two constant co-directed links in a series combina-
tion, the algorithm prioritizes the incoming link. The prioritized link will be
assigned the minimum possible length (sα) and the outgoing link will fill the
remainder (sβ = sα+β − sα where sα+β is the s-value of the equivalent link’s
operating point.

Figure 3.21: Link priorities: a) and b) symmetrical anti-directed links and
c) and d) asymmetrical co-directed links.

The layout algorithm avoids the reduction of anti-directed links to the effect
that—at least for well-formed networks—the prioritizing scheme can rely on
reductions of co-directed links. The worst thing that can happen during
the solution of an ill-formed network is that it takes longer time to solve
it and that the ambiguities are not resolved as expected. Furthermore, the
Box-layer assists the application programmer in the creation of well-formed
networks.
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3.3.4 The Box Layer

The architectural layer of rulers and links a provides powerful layout ab-
straction. But it is still tedious to write application code that creates the
individual rulers and links and connects them with each other. In order to
position a component the application programmer would need to manually

• create and name a ruler object for each of the four edges (top, left,
bottom and right),

• create two link objects for the position and two link objects for the
dimensions of the box and

• connect these four link objects with the four ruler objects.

Furthermore, it is important to create well-formed networks, i.e. networks in
which links are co-directed. Otherwise the ambiguities are not resolved con-
sistently and the solution needs more time and resources due to the repeated
inversion of links. The application programmer should not be held responsi-
ble for creating well-formed networks, since that is an internal optimization
within the layout subsystem.

Consequently another architectural layer is needed in order to relief the ap-
plication programmer. This layer is called the box-layer because it is built
around the Box interface. The Box interface represents the layout aspect of a
component. This implies that components have rectangular bounds. The ad-
vantage of the box-layer is that laying out boxes can be done without having
to deal with rulers at all. The box-layer also reduces the number of occasions
in which links have to be dealt with.

An simple example shows how easy it is to compose boxes (see also fig-
ure 3.22):

new Label$( "Sacramento" )

.stack( new Label$( "Eureca" ) )

.stack( new Label$( "San Louis Obispo" ) )

.pack( new Label$( "Bakersfield" ) )

.stack( new Label$( "Los Angeles" ) )
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Figure 3.22: Composing boxes.

The Box Interface

A box is defined by its four edges: top, left, bottom, right. Each of the edges
is defined by a ruler. The width (and height) of a box can be optionally
constrained by connecting links between its left and right (or top and bottom)
rulers.

The Box interface has methods to

• compose and decompose boxes: pack(), stack(); unpack(), glue(),
unglue() and enclose();

• constrain their dimensions: width() and height();

• synchronize multi-threaded access: lock() and unlock();

• determine their minimum, natural and maximum size: minSize(),
maxSize() and naturalSize();

• get their current bounds (size and location): bounds();

• get and set their four rulers: ruler() and

• anchor a box at the origin (x, y) = (0, 0): anchor()

Composing Boxes

The pack() method composes boxes horizontally whereas stack() composes
them vertically; that is a.pack(b) puts box b to the right side of box a and
a.stack(b) puts box b underneath box a. Method a.pack(b) puts a null-
link between a’s top ruler and b’s top ruler, between a’s bottom ruler and b’s
bottom ruler and between a’s right ruler and b’s left ruler. Method stack()

does something equivalent (figure 3.23a and b).
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Figure 3.23: How a) pack(), b) stack() and c) enclose() glue boxes. Circles
denote null-links.

Both methods return the box that encloses the composition. For example,
a.stack(b) returns a box whose top, left and right ruler are the corre-
sponding rulers of a and whose bottom ruler is b’s bottom ruler. Note that
pack()’s and stack()’s result box shares its rulers with the argument boxes.
The sharing of rulers is a substantial feature of the box-layer. It will be ex-
amined shortly.

Because pack() and stack() return a value of type Box, calls to this methods
can be chained as in a.pack(b).stack(c). In this example, box c will be
put underneath a and b.

The method enclose() (figure 3.23c) puts one box inside another box. For
example, a.enclose(b) puts b inside a.

All the above-mentioned methods are just front-ends for the real workhorse
of the Box interface: the glue() method. This method “glues” two boxes
by connecting any of their rulers using a given link. It can also connect two
rulers of the same box (see also ”Ruler Sharing” on page 147).

Constraining the Size

To restrict the dimension of a box, one uses the methods width() and
height(). For example, to ensure that a box is at least 123 pixels wide one
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uses a.width(new MinLink(123)).10 Again, these methods are just front-
ends for the glue() method. For example, width() uses glue() to span a
link between the left and right edges of a box.

A text-label uses a min-link for its width. The minimum length of this link is
determined using the current font’s metrics and the current text. Whenever
a new text is set, the label recalculates its minimum width and sets its width-
link to that length by modifying the points in the link’s s-F -curve. Because
this is a modification of the layout network, it will trigger a new solution of
the entire network. Modifying the s-F -curve of a link is also referred to as
non-structural modification.

Note that there can be any number of links constraining a box’s dimensions.
Because all these links are connected to the same pair of rulers, they will all
be parallel to each other. In addition to the implicit links which are used
by the framework’s built-in components to constrain their own sizes, there
can be any number of explicit links created by the application programmer.
References to these links are not stored directly within the box. In order
to remove or modify one of them, the reference to the link has to be kept
elsewhere. Every built-in component keeps references to its own implicit
links. If explicit links are going to be removed or modified, the application
programmer is responsible for keeping references to these links.

The Inverse Methods

For any of the compositional methods there is an inverse method which un-
does the effect of that method. For stack() there is unstack(), for pack()
there is unpack() and so on. The inverse methods are simply front-ends of
unglue() which is the inverse of glue(). The existence of inverse methods
allows for dynamic structural modifications of the layout.

Synchronization

JDraw supports concurrent operation. The layout network is fragile data-
structure which needs to be protected such that only one thread at a time
can apply structural and non-structural modifications to the layout.

Every ruler belongs to a network. Consequently, every ruler object (class
Ruler) holds a reference to a network object. The network object (class

10MinLink(123) constructs a force-less min-link, i.e. a link which is at least 123 pixels
long. Common link types are listed in figure 3.5 on page 123.
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Net) holds information shared by all rulers belonging to one network. All
rulers which are directly or in-directly connected refer to the same network
object.

Threads synchronize on this network object. This has the advantage that
threads modifying different networks do not affect each others operation. A
thread which is about to modify the layout network, must acquire a lock
object. This is done using a ruler’s lock() method which forwards to the
lock() method of the ruler’s network. Only one thread at a time can hold
a lock to a particular network. To release the lock, the unlock() method of
a ruler has to be used. A thread can be blocked in lock() if another thread
already holds a lock to that network. When the thread holding the lock calls
unlock(), the following actions are performed:

1. the network is solved,

2. a redraw is triggered in the appearance system and finally

3. one of the blocked threads is woken up and given the lock to.

This scheme only works if every call to lock() is paired with a call to
unlock(). A thread which already holds a lock can call lock() again with-
out getting blocked; that is, lock()-unlock() pairs can be nested. In this
case, only the first call to lock() and the last call to unlock() have the
above mentioned effect. Thus, a sequence of modifications (in one thread)
can be combined, such that the solution process is triggered only once.

Anchoring Boxes

The layout network of rulers and links constrains the relative position of
boxes with respect to each other but not their absolute position in the output
device’s coordinate space. The anchor() method of the Box interface can be
used to anchor the upper left corner of a box at the absolute origin (0,0).

Ruler Sharing

As mentioned previously, the bounds of a box are defined by four rulers.
Unless specified otherwise, the glue() method uses a null-link to connect
the rulers of two boxes. As a result, both rulers have the same position
(value); that is, the rulers are colocated. Obviously, this is a waste of time
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and memory resources. It increases the complexity of the layout network
and slows down the solution process. This problem can be easily resolved by
having boxes share colocated rulers.

Whenever possible, glue() tries to avoid creating a null-link between two
rulers. Instead it sets the ruler in one box to the other box’s ruler such that
both boxes refer to the same ruler. The sharing direction is well-defined;
that is, it is predictable which box keeps its ruler (the sharer) and which
box refers to the other box’s ruler. After gluing box a’s bottom ruler with
box b’s top ruler by calling a.glue(BOTTOM,b,TOP), box a’s BOTTOM ruler
member refers to box b’s top ruler.11

The sharing of rulers is more complicated in practice than it may appear:

• The participating rulers have to be merged if there are any links con-
nected to them; that is, the links have to be redirected from one ruler
to the other.

• The ruler sharing must be invertible in order to support unglue().

• It can happen that a box which already refers to another box’s ruler is
again glued to a third box or that

All the above issues are taken care of by JDraw. A in-depth description of
the sharing algorithm is beyond the scope of this paper.

Well-Formed Networks

The optimization techniques introduced in 3.3.3 on page 133 and 3.3.3 on
page 141 assume that the layout network is well-formed. In a well-formed
network all links are co-directed. A well-formed network can be easily con-
structed by ensuring that every horizontal link points to the right and every
vertical link points downward. Hence, links between boxes always start at
bottom or right rulers and end at top or left rulers. Links between the rulers
belonging to one box start at the top or left ruler and end at the bottom or
right ruler of that box. The box-layer implements these rules consistently.

11The Box interface uses integers to identify the four rulers. TOP, LEFT, BOTTOM
and RIGHT are integer constants.
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Proportions

Sometimes it is necessary that the width or height of a box changes propor-
tionally to the width and height of another box. This can be achieved by
spanning an additional forceful link across these boxes. If the strengths of
both links, i.e. the slope of their s-F -curve are equal, the size of both boxes
will be equal too. If one link is twice as strong as the other one, one box will
be twice as big as the other box. Likewise, this applies to more than two
boxes and more complex strength ratios.

All these links have to be explicitly created and connected by the application
programmer. Currently, there is not much support for this in the box-layer.

Higher-Level Layout Models

The box-layer currently includes two higher-level layout constructs: arrays
and matrices. An BoxArray is like a single-dimensional variable size array.
Its interface is similar to that of java.util.List. The boxes in an array are
either packed or stacked; that is, the array is either horizontal or vertical.
Boxes can be added and removed anywhere from the array.

A BoxMatrix is like a two-dimensional variable size array. The result looks
much like a spread-sheet with the exception that every cell can contain any
kind of box, including matrices and boxes.

The difference between a horizontal array of vertical arrays (or a vertical array
of horizontal ones) and a matrix may seem subtle. Consider a vertical array
(row-array) of horizontal column arrays: the heights of boxes in neighbouring
column-arrays are not related. In a matrix, the heights (widths) of all boxes
in the same row (col) are equal. Figure 3.24 illustrates this.

AWT’s GridBagLayout12 (GBL) can be simulated using a BoxMatrix. The GBL
parameters grid-coordinate, grid-width and grid-height directly correspond to ma-
trix parameters.

GBL’s padding and insets parameters can be emulated using fixed links of the
desired width. To do so, the actual cell content box has to be wrapped in another
inset box which in turn has to be wrapped in a padding box.

The fill and anchor parameters can be emulated using forceful links which pull

12More information on GridBagLayout can be found in the Java API documentation
which is included in Sun’s Java SDK.
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Figure 3.24: Arrays and matrices: a) a row array of column arrays and b) a
matrix.

the cell content box to its minimum size and by wrapping the cell content box
in another box. For example, if the anchor parameter is SOUTH EAST, the bottom
and right ruler of the content box has to be glued to the bottom and right ruler
of the wrapping box using null links. Force-less min-links of length 0 connect the
top/left ruler of the content box to the top/left ruler of the wrapping box. In order
to emulate a CENTER anchor one could simply use force-full links of equal strength
which push the content box into the center of the wrapping box.

The weight parameter can be emulated using force-full links whose strength cor-

responds to the GBL weight. If, for example, the weightx parameter of the first

cell is 2.0 and 1.0 for all remaining cells, one could use a forceful link of double

strength across the width of the first cell and forceful links of single strength across

the width of the remaining cells.

Absolute Layout

Some applications may require that components can be sized and positioned
using absolute coordinates. The Mover and Sizer interfaces are Box exten-
sions which can be used for this purpose. Both are invisible boxes enclosing
the box to be positioned or sized. Mover uses two fixed links (a horizontal
and a vertical one) to put itself at a fixed position in relation to another box
(usually the anchor box). In order to change the position of the enclosed
box, Mover modifies the two fixed links accordingly. Likewise, Sizer uses
fixed links across the width and height of the box it encloses. The length of
these links can be set through methods in the Sizer interface. Mover and
Sizer are instances of the Decorator pattern.

I chose to put this functionality in a separate interface, because most boxes
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will never be positioned using absolute coordinates and I wanted to avoid
the overhead of two unused links per box.

3.3.5 Conclusions

According to [HHMV93] a constraint-based system for graphical editing
needs at least the following capabilities:

• “multi-way constraints that can express at least simultaneous linear
equations and inequations”

A link in JDraw is equivalent to a linear equation on two variables,
i.e. rulers. JDraw emulates inequalities by using a very large “infi-
nite” value for the link length s. The term “multi-way” describes the
property of a constraint not to distinguish between dependent and inde-
pendent variables. JDraw’s links are multi-way because JDraw doesn’t
prefer one of the link’s rulers to be independent. Both rulers are com-
pletely equivalent. JDraw doesn’t decide which ruler to move in order
to satisfy the constraint. In fact, rulers aren’t moved (i.e. assigned a
value to) during the solution process at all. The solution process only
assigns values to the length of a link, i.e. the relative distance between
two rulers.

• “low latency and high-bandwidth feedback during direct [interactive]
manipulation”

The terms low latency and high-bandwidth are subject to personal
opinion. Sample applications show that JDraw’s layout solution al-
gorithm provides “interactive” responsiveness. Its performance results
from the following design decisions: JDraw uses a recursive reduction
process which uses the method call stack to backup the data-structure
before modifying it. Furthermore, JDraw does not use container classes
in order to implement internal layout data-structures. All layout data-
structures are tuned for inexpensive modification during the reduction
process.

• “incremental addition and deletion of constraints”

Links can be added to the network and removed from it at any time.
The box layer has an inverse for every operation (glue/unglue and so
on).
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• “the ability to detect causes of unsatisfiability for debugging inconsis-
tent systems of constraints”

Currently, JDraw only detects in-solvability, but it does not really offer
means to debug the cause.

• “Semantic feedback during direct manipulation to indicate valid ranges
for variables and movements of objects”

JDraw’s solution process has a second mode of operation—besides de-
termining the value for each ruler, it can also determine the equivalent
link between two rulers. This equivalent link describes the range, i.e.
minimum and maximum length of the link. Every interactive manipu-
lation in JDraw is done by means of adjusting the s-F -curve of a link.
The range of the equivalent link can be used to restrict the range of
the interactive manipulation.

• “graceful handling of under-constrained systems”

JDraw implements a physical model which uses a generalized spring
(link) analogy. The force parameter of a link is used to disambiguate
layouts. Therefore, an under-constrained system is caused by links with
a horizontal segment in their s-F -curve (see “Constant-Link Ambigu-
ities” on page 141). JDraw resolves these ambiguities by prioritizing
links based on their direction.

The UniDraw framework initially came with a layout constraint solver sim-
ilar to JDraw’s. This solver is introduced in [VL90]. All in all, JDraw’s
solver is an extension of the initial UniDraw solver. The authors of UniDraw
later incorporated a completely different solver engine into UniDraw, called
QOCA [HHMV93]. QOCA uses a variant of the simplex algorithm which can
solve systems of linear (in)equalities and optimize convex quadratic functions.
JDraw can only optimize piecewise linear functions: the links’ s-F curves.

QOCA is an incremental constraint solver. As opposed to JDraw which
has to recompute the complete solution every time a constraint changes,
QOCA keeps the current solution around in order to determine subsequent
solutions when the constraint system is perturbed. This greatly speeds up the
solution process. QOCA “invests” the performance gained by its incremental
algorithm in its ability to solve more powerful constraints. QOCA supports
systems of linear (in)equalities on any number of variables. JDraw only
supports systems of linear (in)equalities on two variables per equation and
without constant factors.
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QOCA’s capability to optimize convex quadratic functions can be used to
minimize the distance of two two-dimensional points, e.g. to compute the
start and end point of the shortest possible line between two rectangles (fig-
ure 3.25a). The distance d of two points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2. (3.1)

The desired result can be achieved in QOCA by (1) constraining the start
and end points of the line using

lA ≤ lB ≤ rA ∧ bA ≤ bB ≤ tA ∧ lC ≤ rB ≤ rC ∧ bC ≤ tB ≤ tC (3.2)

and (2) optimizing the quadratic function

minimize((rB − lB)
2 + (bB − tB)

2). (3.3)

JDraw can determine the end-points of the shortest possible line between
two boxes, too. Figure 3.25b shows how min-links keep the line’s start and
end points inside the rectangle. Forceful links can then pull the line’s box to
its minimal size (figure 3.25c). The solution is identical to the one achieved
by QOCA. Whether JDraw’s ability to optimize piecewise linear functions
enables it to solve the same (or an equivalent) class of constraints as QOCA
is not fully understood.

Figure 3.25: Shortest line between two rectangles — a) implemented in
QOCA (source [HHMV93]); b) and c) implemented in JDraw.

Neither QOCA nor JDraw treat points as truly two-dimensional vectors.
Both handle the x– and y–coordinates of a point separately. As far as JDraw
is concerned, this fact limits its physical model to springs between which the
angle is 0◦ or 180◦.

A good overview on constraints in interactive graphical applications can be
found in [Bad98]. According to the taxonomy found there JDraw is a very
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simple form of a direct numeric solver. Direct numeric solvers, like QOCA,
find a solution through symbolic manipulation of systems of equations. It
might not be immediately apparent that JDraw performs symbolic manipula-
tion. Since JDraw only supports systems of linear equations on two variables
per equation the number of symbolic manipulations is limited. This obscures
the fact that JDraw is a direct numeric solver.

None of the constraint systems examined in this text support disjunctions
of constraints. Disjunctive constraints are very useful for interactive graphi-
cal editors but require backtracking algorithms which are currently not fast
enough to provide real-time, interactive responsiveness. Research in this area
seems to be focused on improving backtracking algorithms by making them
incremental (see [Bad98]).

3.4 The Appearance Subsystem

The layout sub-system takes care of the components positions and dimen-
sions. Given this information, the components can be rendered. This aspect
of components is accomplished in the appearance subsystem. The appear-
ance sub-system determines

• when to render the components,

• which components to render and

• in which order.

3.4.1 The Interfaces

The appearance sub-system is built around the relationship between two in-
terfaces: Glyph and Surface. A glyph is anything which can be rendered. A
surface is something onto which glyphs can be drawn. JDraw’s appearance
subsystem factors most of the control flow for the screen update into the
Surface implementation. The glyphs contain only callbacks which are in-
voked by surface at the various stages of the rendering process. This concept
was inspired by ET++ [WG95] (see also section 1.5.2) and it allows for later
extension and further optimization of the rendering algorithm.

The following extract shows the interface Subject and Glyph.
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public interface Surface {

void register( Glyph glyph );

void unregister( Glyph glyph );

void toFront( Glyph glyph );

void toBack( Glyph glyph );

void back( Glyph glyph );

void fore( Glyph glyph );

void conceal( Glyph glyph, Bounds bounds );

void reveal( Glyph glyph, Bounds bounds );

void beginPaint();

void endPaint();

java.awt.Graphics graphics();

}

public interface Glyph {

void render( java.awt.Graphics graphics );

void layout( Surface surface );

}

Surface.register() registers a glyph with the surface. The registered
glyph will be informed when it needs to be redrawn. The order in which
glyphs register with the surface determines their Z-order. The actual draw-
ing process is done in two phases: layout and rendering.

During the first phase, the surface asks all its registered glyphs to lay them-
selves out. For this purpose, the surface invokes layout() on each of its
registered glyphs. The glyphs can then tell the surface which areas the re-
vealed, i.e. not used by the glyph anymore, and concealed, i.e. taken up
by the glyph. This done through the methods reveal() and conceal()

respectively. The surface cumulates the concealed and revealed areas. The
revealed areas are cleared using the background color.

All areas are represented by instances of the Bounds class, which has rudi-
mentary operations to add and subtract bounds objects, to test for equality
and whether one bounds object completely contains another one.

During the second phase, the glyphs will finally be drawn. The surface sets
the clipping area to the sum of the cumulated concealed and revealed areas
and invokes the render() method of each glyph that overlaps the clipping
area. The clipping area will also be used to set the clip-rectangle in Java’s
graphics class.

The current scheme is just a slightly optimized version of the approach of
simply rendering every glyph every time the layout changes. It makes use of
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clipping functionality in java.awt.Graphics and tries to reduce the number
of glyphs that are redrawn without need. Nevertheless, the protocol defined
by the Glyph and Surface interfaces leaves room for further improvements.
For example, the way how revealed and concealed areas are cumulated can
be improved drastically. Figure 3.26 shows that the cumulation of two small
areas yields a much bigger area. This area covers many more glyphs than
actually need to be redrawn. A better algorithm keeps track of multiple
revealed and concealed areas and only combines them into a bigger area if
this can be done “seamlessly”.

Figure 3.26: The sum of two areas.

3.4.2 Z-order

The Z-order controls the overlapping of components. Components which are
closer to the front can overlap components closer to the back. The easiest
way to implement a Z-order of components is by defining a consistent order
in which the components are drawn. Thus, components can be drawn on top
of other components. The visual result will always be the same as long as
the components are drawn in the same order.

The appearance subsystem renders components in the order of their regis-
tration. It keeps a list of glyphs and redraws the glyphs according to their
order in this list. The methods toFront(), toBack(), fore() and back()

can be used to control the Z-order any time after the registration.

3.4.3 GlyphBox

There is no sole glyph implementation class in JDraw. Instead, there is the
merger interface GlyphBox and its implementation GlyphBox . It merges the
glyph and box functionality; or more precisely, it uses the layout information
provided by Box to implement the glyph-surface protocol. In most other
frameworks the layout and the appearance aspect are not separated. JDraw
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allows for later addition of other layout mechanisms without having to throw
away any of the appearance code.

It is also possible to write components which compute their layout on their own.

Tool-tip windows, which can be found in almost any graphical user interface, are

a good example for this. Tool-tip windows are small boxes containing a short text

which gives context-dependent information about the component over which the

mouse cursor is currently located. They appear when the mouse is held still for

a few seconds. Because their position only depends on the location of the mouse

pointer and their lifetime is relatively short it would not make sense to integrate

them into the layout of the persistent components.

Figure 3.27 shows an abbreviated class diagram of JDraw.13 All visible com-
ponents (Border, Border3D, Label and Rect) are descendants of GlyphBox.
Interestingly, Button is not a GlyphBox descendant. This is because it is does
not do any rendering itself. Instead, it is composed of simpler components
which do the rendering for it: a text label, a border and a 3D-border.

�����

��� �
	��������
���������� ������������
��� � ��� ���������� � � �

����� � �������� �
	��

����� ����� ����� ����� ��� �������  �������

����� � ��!

"#��� � �

$ ������% ��&'� % ()� ��*+�

,�� ��&'-���� � .

Figure 3.27: JDraw’s class diagram (implementation classes are omitted).

It is important to understand the difference between object composition and class

composition. The Button implementation class (Button ) incorporates Box func-

tionality through the mechanisms of WeaveJ: WeaveJ modifies the bytecode of

Button such that it inherits the Box class. On the other hand, a Button object

is composed of three other objects. The composition is enforced by the layout

13Usually class diagrams like that occur early in texts about object oriented software. I
deliberately put this figure towards the end of this text, because the inheritance view of a
WeaveJ-based design is less important than the subsystem view.
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mechanisms; that is, the 3d-border encloses the border which encloses the text-

label.

3.4.4 The World

There are two different ways to draw something onto the screen in Java:

• writing platform-specific native code (JNI) which makes use of the op-
erating systems drawing functionality or

• inheriting a AWT component to obtain an instance of AWT’s Graphics
class and use this graphics object to draw lines, rectangles, text and so
on.

JDraw uses the second approach. The World class inherits java.awt.Frame
and implements the Surface interface. Rather than inheriting Frame, one
could also inherit Applet or Window. Inheriting Applet would have the
obvious advantage that JDraw could be directly used in web-pages.

The difference between Window and Frame is that a Windows does not have
any decoration at all. At the current stage of JDraw, inheriting Frame is
the easiest solution and has the advantage that frames can be resized inter-
actively. That way, the responsiveness of JDraw’s layout algorithm can be
demonstrated, without having to implement the interaction subsystem.

3.4.5 Viewport

The second Surface extension, besides World, is Viewport. Viewport is an
interesting component because it demonstrates the flexibility gained by using
WeaveJ for framework development. First of all, a viewport is a surface onto
which glyphs can be drawn. Consequently, the Viewport interface extends
the Surface interface. The viewport displays a rectangular subsection of the
glyphs it contains. It displays them on another surface which can be a World

or a even another viewport. Consequently, the viewport is also a glyph. It
serves as a surface to the glyphs it contains and at the same time it is a glyph
on another surface which contains it.

It should be possible to use the viewport in box layouts. For that purpose the
viewport is a box, as well. The combination of glyph and box is represented
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by the GlyphBox interface. All in all, the Viewport interface extends the
Surface interface and the GlyphBox interface.

A viewport translates between two layout networks: an external network
and an internal network (figure 3.28). Both networks are completely inde-
pendent; that is, there is no link connecting a ruler in the external network
with a ruler in the internal network. A viewport has to provide means of
adjusting the rectangular subsection of the internal network it displays. This
rectangular subsection is called window. In traditional GUI toolkits, the win-
dow’s location is controlled by specifying the absolute internal coordinates
of the window’s upper left corner. JDraw doesn’t use fixed coordinates for
anything in its layout. It uses rulers and links. Using absolute coordinates
for the window’s location would not fit in this scheme very well. Therefore,
JDraw uses a different approach: the viewport projects its own bounds—keep
in mind that a viewport is a box in the external network—onto the internal
network (figure 3.28). The boxes in the internal network can then be laid
out relative to this projected box. For example, the traditional approach of
using fixed coordinates for window location can thus be emulated using fixed
links.

Figure 3.28: Internal and external network of a viewport.
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3.4.6 Update handling

As opposed to AWT or ET++, JDraw’s update handling is synchronous; that
is, there is no separate thread which does the update handling concurrently.
Both, the synchronous and the asynchronous approach target the problem
of batch updates. In an average application, modifications to the layout or
the appearance of components often occur in bundles, i.e. batches. For
example, when an application initializes a form it resets all controls on that
form to suitable initial values. Setting the value of a controls requires that
the control is redrawn (updated). For some controls even the layout has to
be recomputed. The desired behaviour is to delay layout computation and
screen update until the last control is initialized. This is because the user is
only interested in seeing the fully initialized form and does not actually want
to watch every stage of the initialization process.

The asynchronous approach delays screen update until the system is idle. It
does so by executing the update code in a separate, low priority thread. The
application thread and the update thread have to be synchronized against
each other. In AWT, for example, this is done using a lock object and Java’s
built-in synchronization mechanism. The disadvantage of the asynchronous
approach is that it doesn’t provide precise control about when the screen-
update actually happens. In most cases this is not a problem. Sometimes
though, an application needs to animate certain user interface components.
For example, when the application needs to inform the user about the state
of a lengthy operation. At every stage of the operation, the application
adds an entry to a log window. In toolkits with pure asynchronous update
handling, the messages would not appear until the operation is finished which
is certainly not the desired behaviour.14

JDraw’s synchronous update handling bundles batch updates and provides
control about when a screen update happens. It simply uses a counter and
pairs of increment and decrement-and-test operations on this counter. The
beginPaint() and endPaint() methods in the Surface interface represent
this mechanism. Code which modifies the appearance of components must be
enclosed between calls to these two methods. beginPaint() increments the
counter. endPaint() decrements the counter and, if the counter reaches zero,
triggers a screen update. The counter value represents the nesting depth of
beginPaint() and endPaint() invocation pairs. Only the endPaint() call

14In Java’s AWT and Swing it is possible to work around this problem by having the
application thread yield() after each stage of the operation. Hopefully, the update thread
gets enough time to finish the screen update until the application thread is rescheduled
again.
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of the outermost pair in a particular program control flow triggers a screen
update. In the above example, the initialization code simply needs to be
put between a call to beginPaint() and endPaint() (actually lock() and
unlock(), see below):

// application specific code:

Label nameLabel, ..., zipcodeLabel;

void initialize( Costumer costumer ) {

surface.beginPaint();

nameLabel.text( costumer.name );

...

zipcodeLabel.text( costumer.zipcode );

surface.endPaint();

}

// JDraw’s label implementation

class Label_ implements Label {

void text( String text ) {

beginPaint();

this.text = text;

// invalidate area occupied by label in order

// to ensure that the label is redrawn:

surface.conceal( bounds() );

endPaint();

}

}

In the animation example, these calls can simply be omitted. This is because
the text() method in the Label implementation already contains them.

void log( String message ) {

messageLabel.text( message );

}

The layout subsystem determines the size and position of boxes while the ap-
pearance subsystem takes care of drawing glyphs. Many components, (more
precisely, components which are extensions of the merger interface GlyphBox)
are box and glyph at the same time. Consequently, screen update and layout
have to be coupled. Whenever the layout changes, i.e. whenever a ruler
moves, the screen needs to be updated. The layout synchronization mech-
anism (see “Synchronization” on page 146) ensures that only one thread at
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a time modifies the layout. It also bundles the subsequent layout modifi-
cations similar to the appearance subsystem bundling batch updates. The
coupling between layout and screen updated is done as follows: Every net-
work of rulers (layout network) has an owner. The owner implements the
NetOwner interface. Surface implementations like World and Viewport own
networks and implement this interface. The network notifies its owner when
it is locked and when it is unlocked. The owner, i.e. the surface, reacts by
invoking its own beginPaint() method (on lock) or endPaint() method (on
unlock).

Example: The application calls Label.text() on a label to set its text. The
Label.text() method calls the Box.lock() method. Box.lock() calls the Ruler
.lock() method on one of its rulers. Ruler.lock() calls Network.lock() on the
network this ruler is part of. Net.lock() increments a network-specific counter
(after ensuring that no other thread is currently holding a lock on this network)
and calls NetOwner.onLock() on its owner. Suppose that the owner is an instance
of World. This means that World.onLock() is invoked. World.onLock() calls
World.beginPaint() which increments another, World-specific counter.

Label.text() then determines this label’s minimum size (based on the new text

and the current font) and modifies the two min-links which are connected be-

tween the label’s left (top) and the right (bottom) ruler. Label.text() then

calls Box.unlock() which forwards to Ruler.unlock() which in turn forwards

to Net.unlock(). Net.unlock() decrements the network-specific counter again

and solves the whole network if the counter reaches zero. It then calls NetOwner-

.onUnlock() which means that World.onUnlock() is invoked. This method calls

World.endPaint() which decrements the World-specific counter. If the counter

is zero, World.endPaint() calculates the updated area and finally redraws the

glyphs intersecting that area (this includes at least the label glyph).

Roughly speaking, a call to Box.lock() leads to an invocation of begin-

Paint(). On the other hand, a call to beginPaint() does not lead to a call
of lock(). JDraw differentiates between GUI modifications which affect the
layout—these must be enclosed between lock() and unlock()—and mod-
ifications which affect the appearance but not the layout—these must be
enclosed between beginPaint() and endPaint(). For example, changing
the background color of a text label component (Label) affects its appear-
ance only, changing the font usually also affects its size, i.e. the layout.
This is why Label .fontChanged() calls lock() and unlock() but Label -

.foregroundColorChanged calls beginPaint() and endPaint().
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In summary, the coupling between JDraw’s layout and appearance subsys-
tems

• synchronizes application threads which are concurrently modifying the
user interface,

• bundles batch updates for higher performance while still

• supporting animated user interface modifications.

3.5 The Consistency Subsystem

The Consistency subsystem integrates the Observer design pattern into the
JDraw framework (see section 1.1.3). This design pattern frequently occurs
in GUI programming because graphical user interfaces are often representa-
tions of an application’s internal data. The Observer pattern decouples the
representation from the data and provides consistency between the repre-
sentations and their underlying data. The Observer pattern (and JDraw’s
consistency subsystem) defines two interfaces: Subject and Observer. The
Subject interface defines functionality for registering and unregistering ob-
servers. The Observer interface defines callback method which the subject
invokes on each registered observer after it is modified (notification).

Although this scheme seems fairly straightforward, it raises problems when
it is to be implemented in an reusable way. A reusable implementation of
the Observer pattern should have the following properties: it should

• ensure that only a particular subtype of observer can be attached to
a particular subtype of subject. For example, the UniDraw framework
([VL90], see 1.3) incorporates the subject and observer functionality
in the base classes of its framework class hierarchies: Component and
ComponentView. The registration method attach() in Component is
declared using ComponentView as the argument type. This gives the
wrong impression that it is possible to attach any observer to any sub-
ject.

• not make it too hard for the observer to find out which of the subject’s
parts actually changed; that is, the notification should be subject spe-
cific. For trivial subjects it might not be a problem if the notification
is unspecific. The observer could simply rebuild itself completely. For
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complex subjects, rebuilding the entire observer can easily become ex-
pensive. Consequently, the observer needs to examine the whole subject
and compare the subject’s state with its own state. This can lead to
complex algorithms whose only purpose is the recovery of information
that got lost because the notification protocol is too unspecific.

JDraw’s implementation of the Observer pattern has the above properties.
There is no attach() method in the Subject implementation. Instead, the
attach operation is defined in concrete Subject subtypes which can then
declare this method using a concrete subtype for the observer argument.
Knowing the concrete observer subtype makes it possible to specify a specific
notification protocol. This satisfies the second of the above criteria.

// bank account

interface Account extends Subject {

void attach( AccountObserver o );

void detach( AccountObserver o );

// set account number

void number( String s );

// get account number

String number();

// add an transaction

void add( Transaction t );

// remove transaction

void remove( Transaction t );

// get a transaction by index

Transaction transactionAt( int position );

...

}

// bank account representation

interface AccountObserver extends Observer {

void numberChanged();

void transactionAdded( int position );

void transactionRemoved( int position );

}

This approach has a slight anomaly: since there is no attach()method in the
Subject interface it seems that every concrete subject needs to re-implement
the registration functionality and that there is not really any reusable func-
tionality in the abstract subject to benefit from at all. In fact, there is an at-
tach operation in the Subject interface. It is declared as attach(Observer



3.6. THE PROPERTIES SUBSYSTEM 165

o). The name starts with an underscore to indicate that this method should
only be called by concrete subjects and not from anywhere else in the client
application. In standard Java one would use the protected modifier for the
attach() method in order to ensure that only subclasses can invoke it.

This is one of WeaveJ’s weaknesses: since every method declared in an interface is

implicitly public, there is no way to restrict access to the methods in an interface.

Ideally, WeaveJ would provide the ability to restrict access to the methods in an

interface based on the type of the caller. In the above case of Subject, access to

attach(Observer o) should only be granted to subtypes of Subject.

3.6 The Properties Subsystem

The properties subsystem was inspired by InterViews’s Styles [LCI+92]. It
implements sets of component properties. For a motivation on property sets
refer to section 1.4.2 on page 21. The central interface in this subsystem
is Properties. It represents a set of (key, value) pairs. Each of the pairs
represents a property. There can be none or exactly one property per key in
a set.

interface Properties extends Subject, PropertyObserver {

// initialize an empty property set

void Properties();

// initialize a property set to inherit another one

void Properties( Properties parent );

// attach a property observer

// this can be a component or another property set

void attach( PropertyObserver observer );

// add or set a property

void set( Class key, Object value );

// get a property

Object get( Class key );
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// unset (=remove) a property from the set

Object unset( Class key );

}

Keys are Class Objects

As opposed to InterViews, JDraw does not use strings as property keys but
class objects. Using strings to identify properties is error prone because
strings are hard to keep unique and easy to misspell. Class names can be
checked at compile time (using the Foo.class syntax). Furthermore, class
names are automatically unique—there cannot be two classes having the
equal names in the same package. This prevents conflicting property keys
in case an application mixes JDraw’s built-in properties, application defined
properties or even properties defined in framework extensions (e.g. third
party component sets). The framework, the application and the framework
extensions belong to distinct packages separating the name-space of the prop-
erty keys.

Property Sets Are Subjects

The Properties interface extends the Subject interface which indicates that
the properties subsystem is based on the consistency subsystem. The idea
behind this is simple. Instead of treating properties as an integral part of
components, a property set can be regarded as external state which is rep-
resented and thus observed by components. For every property (e.g. font)
there is a corresponding concrete observer interface (e.g. HasFont). For ex-
ample, a component that supports the font property simply implements the
fontChanged(...) method in the HasFont interface. Whenever the font
property in a property set changes, the property set notifies all observing
components by invoking the fontChanged(Font font) method.

Inheritance between Property Sets

Property sets can inherit from other property sets. For that purpose, prop-
erty sets are also property observers. If a child property set inherits from
another parent property set, it simply observes its parent. If a property
in the parent changes, the parent notifies all attached observers. Among
them is the child property set which in turn informs its own observers unless
the child property set overrides the changed property. In case the property
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is overridden, the change is not notified to the child’s observers because it
doesn’t apply to them. The overridden property is not affected.

The fact that property sets are subjects and observers is an example for
the subject-view duality presented in the first chapter (see section 1.3.1 on
page 15).

Property Caching

The only way to modify a component’s properties is through the property
set it is attached to. There is no need to write a property getter for every
component class. The component only needs to implement the notification
method of the property observer interface. If a components needs a property
for rendering itself, it should cache the property value internally. This is
because looking up a property in the property set might involve looking it
up in the parent property set (or even the parent’s parent and so on). Caching
a property value only requires an additional reference field in the component
class. The actual property value is not duplicated.

// without property caching

void render( Graphics g ) {

g.setFont( (Font) properties().get( HasFont.class ) );

}

void fontChanged( Font font ) {

refresh();

}

// with property caching

private Font font;

void render( Graphics g ) {

g.setFont( font );

}

void fontChanged( Font font ) {

this.font = font;

refresh();

}
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Creating New Properties

Properties are weakly typed, e.g. the set() method declares the property
value argument as Object. Here, JDraw trades flexibility for type-safety.
The Properties interface and its implementation support any number of
property types. Adding application specific properties does not require a
modification to the Properties interface or its implementation. Creating
properties only requires a new Has... property observer interface and a tiny
implementation of that interface.

Usage Example

The above features are illustrated in figure 3.29 and in the following usage
example.

Figure 3.29: Property sets and components: the right property set inherits
from the left property set and overrides the background color property.

// create property set

Properties props1 = new Properties$();

props1.set( HasForegroundColor.class, Color.blue );

props1.set( HasBackgroundColor.class, Color.red );

props1.set( HasFont.class, new Font( "Times" ) );

// create labels using the specified properties

Label label1 = new Label$( world, props1 );
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Label label2 = new Label$( world, props1 );

// create a new set which inherits props1

Properties props2 = new Properties$( props1 );

// override a property in props2

props2.set( HasBackgroundColor.class, Color.green );

// create a label using props2

Label label3 = new Label$( world, props2 );

// affects label1 and label2 only

props1.set( HasBackgroundColor.class, Color.orange );

// affects all three labels

props1.set( HasFont.class, new Font( "Courier" ) );

The Notification Protocol

Property sets do not know about particular types of properties. Neither
do they know about the corresponding Has... observer interfaces. The
notification protocol between property sets and observers is weakly typed.
The property observer interface is listed below.

interface PropertyObserver extends Observer {

void propertyChanged( Class key, Object value );

}

A component may implement this weakly-typed notification protocol. The
body of propertyChanged() would contain a sequence of if-statements
checking for the property key. This is functionality that should be imple-
mented by the framework. Consequently, JDraw adds another strongly-typed
layer on top of the weakly-typed one. This layer is made up of the Has...

interfaces mentioned earlier. They translate the weakly-typed notification
protocol into a strongly-typed one.

// strongly typed observer interface

interface HasFont extends PropertyObserver {

void fontChanged( Font font );

}

// and its implementation class
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abstract class HasFont_ ... implements HasFont {

// override untyped notification method

public void propertyChanged( Class key, Object value ) {

if( key == HasFont.class && value instanceof Font ) {

fontChanged( ( Font ) value );

} else {

super.propertyChanged( key, value );

}

}

}

HasFont is abstract because it does not implement fontChanged(). This
method is implemented by the actual component. HasFont simply translates
between propertyChanged() and fontChanged(). If the changed property
is not the font property, HasFont forwards to super.propertyChanged().

An interesting thing happens when a component supports more than one
property (as most components do). For example, the Label component sup-
ports the font, foreground and background color properties. Consequently, it
implements the HasFont, HasForegroundColor and HasBackgroundColor

interfaces. WeaveJ composes the Label class by including the HasFont ,
HasForegroundColor and HasBackgroundColor implementations in the
inheritance chain. WeaveJ also arranges the parent-class references of the
super.propertyChanged() statement in all of these implementations into
a chain. The chain ends with the empty propertyChanged() method of
the PropertyObserver implementation. The chain of if-statements in the
weakly-typed solution becomes a sequence of non-virtual method calls in
the strongly-typed variant. Because the method calls are non-virtual, the
strongly typed solution is only slightly more expensive.

Conclusions

The following list summarizes the features of the properties subsystem.

• Programming comfort: Property sets make the life of the applica-
tion programmer a lot easier. Changing the look of all the components
in an application only requires setting a new property value in the
property set. This can be done in a single statement.

• Resource-saving: The properties subsystem aids the programmer in
saving resources. Instead of having one Color instance per component,
components can share a single instance.
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• Scalability: Creating new properties (e.g. application specific prop-
erties) is simple. It just requires writing a new observer interface and
its implementation class.

• Performance: The properties subsystem adds one level of indirection
to property access. Adding levels of indirection impacts performance.
The property subsystem is tuned to cope with this. It trades write
for read performance. Modifying a property is relatively expensive—
it is O(o ∗ p), where o is the number of observers of a property set
and p is the average number of properties. Supposing constant-time
performance for the lookup operation in java.util.HashMap (which is
used in Properties to map property keys to values), property lookup
is O(i) where i is the depth of property inheritance (usually less than
10). Property caching makes property lookup as fast as accessing a
field but takes an additional 4 bytes (on 32-bit JVM implementations)
per component and cached property.

3.7 Further Development

The following list summarizes areas in which JDraw needs to be extended
and improved.

• Implementation of the remaining history and interaction subsystems.

• Implementation of more built-in components.

• Optimization of the redrawing scheme.

• Ruler sharing reduces the number of colocated rulers but it only elim-
inates rulers which are connected through null-links. Comb-like struc-
tures as shown in figure 3.30 are very common in real-world layouts.
They create large numbers of colocated rulers. The detection and elim-
ination of these structures would improve the performance and resource
usage of the layout algorithm.

• Implement rulers and links and probably boxes as fly-weights. The
incorporation of this design pattern would enable JDraw to layout large
repetitive layout structures like long tables.

• Implememt java.awt.Window-based and java.awt.Applet-based sur-
faces.
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Figure 3.30: Colocated rulers created by comb-like structures. The figure
shows n boxes each of which contains another box. Each of the inner boxes
will have its own private top ruler. If the n links between the top rulers of
the outer and inner boxes are all equally long, the n rulers will be colocated
and should be shared.



Terminology

Many of the following terms are already well-known in the world of software
engineering but sometimes they are to mean a variety of things. It thus
makes sense to define our connotation.

Object: A object is an encapsulation of state and behaviour. It is not
necessarily an instance of a class.

Component: This term has two distinct meanings. If not explicitly stated
otherwise, I use the term component to denote a object which is part of the
user interface. It does not necessarily have to be visible to the user, although
most components are. I refer to visible components as widget.

The second meaning was coined by distributed component technologies like
CORBA and DCOM, which use the term in a more general manner to denote
the distinction between objects and components in such systems. Quoting
[Szy99],

software components are binary units of independent production,
acquisition, and deployment.

And more importantly

components are for composition. Nomen est omen. Composition
enables prefabricated ‘things’ to be reused by rearranging them
in ever new composites.

Accordingly, the major characteristics of components are composition, reuse
and encapsulation.

In component oriented GUI toolkits and frameworks these two definitions of
the term are related: widgets are components but not necessarily vice versa.
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Component- and object-oriented programming do not exclude each other. In
fact, COP can be an extension of OOP in which components are objects and
described by classes.

Framework aka. application framework. A framework is a way of reusing
a system’s architecture. A framework defines a whole family of systems.
The difference between frameworks and libraries/toolkits is that a framework
dominantly outlines the system’s architecture whereas a library specializes
on one particular aspect of a system’s design. Object-oriented (component-
oriented) frameworks are collections of classes (components).

Interface aka. Contract aka. Protocol: An interface is a behavioural
description of an object. It is an abstract type declaration mostly consist-
ing of operation signatures. Java has a special keyword and semantics for
interfaces. In general, every class has an interface, although it may not ex-
plicitly implement one. This implicit interface consists of the class’ public
methods. In C++, a class’ interface is usually specified separately from its
implementation in a header file.

Components can also have interfaces. CORBA and DCOM use a special
language to describe the interface of components: IDL.

Implementation: The term implementation describes (1) the incarnation
of a concept, a model or a standard, (2) the realization of an interface. A
class which implements a particular interface has to provide a body for every
method required by the interface.

Client (code/software/class): A client is software that uses a framework
or a library. The client programmer, aka. framework/library user, is someone
who writes this software. This term is also used frequently when describing
design patterns. Client code is code that uses a pattern but does not belong
to the classes that make up the pattern.

Delegation: Delegation is a technique which composes objects (components,
delegatees) into a composite (delegator) such that the interface of the com-
posite is the sum of the components’ interfaces. The composite forwards
messages to its components.

Message: A message is the atomic part of the communication between
objects. Depending on the programming language messages have different
semantics. In the context of this text the terms message and method are
used synonymously. A message is sent to an object means that a method of
that object’s class is invoked. A message is implemented by an object means
that the object’s class has a method body for a particular signature.



Zusammenfassung in deutscher
Sprache

Die Wiederverwendung von Software ist eines der Hauptziele auf dem Ge-
biet der Softwaretechnik. Das Prinzip der Vererbung zwischen Klassen in
objektorientierten Programmiersprachen war ursprünglich dazu gedacht, es
Softwareentwicklern zu erlauben, ihre Software wiederzuverwenden. Die
Forschung der letzten Dekade hat Zweifel aufkommen lassen, ob Vererbung
diesem Anspruch wirklich gerecht werden kann, ob also Systeme, die mit
Hilfe von Vererbung entworfen wurden, auch wirklich leicht erweiterbar und
wartbar sind, und ob Teile dieser Systeme auch wirklich in anderen Systemen
wiederverwendet werden können.

Die noch relative junge Forschung im Umfeld der Generativen Program-
mierung kritisiert, daß sich die traditionelle objektorientierte Softwareent-
wicklung primär auf die Erstellung eines einzelnen Systems fokussiert. Die
Entwicklung von wiederverwendbarer Software macht eine alternative Heran-
gehensweise erforderlich. Wenn der Enturf eines Systems aus einer Familie
von Systemen nur auf dieses eine System ausgerichtet wird, dann erscheint es
unwahrscheinlich, daß die resultierende Implementierung oder Teile derselben
für andere Systeme aus dieser Familie benutzt werden können.

Folglich sollten Enwickler, die an der Wiederverwendbarkeit ihrer Produkte
interessiert sind, den Entwurf ihrer Software auf ganze Systemfamilien aus-
richten. Die vorliegende Arbeit versucht, diese Herangehensweise zu bestä-
tigen, indem ein generisches Anwendungsframework für grafische Benutzer-
schnittstellen und grafische Editoren visueller Sprachen entworfen und im-
plementiert wird.

Kapitel 1 gibt einen Überblick über ausgewählte GUI-Frameworks, unter-
sucht deren Design und analysiert die zugrundeliegenden Konzepte. Es zeigt
die Vor- und Nachteile dieser Systeme aus der Perspektive des Entwicklers,
der sie benutzt, als aus der des desjenigen, der sie erstellt, wartet und wei-
terentwickelt.
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Kapitel 2 analysiert verschiedene alternative Enwurfsmethodiken und Imple-
mentierungstechniken. Es zeigt, wie diese angewendet werden können, um
die Wiederverwendbarkeit und Flexibilität von objektorientierter Software im
allgemeinen und von Anwendungsframeworks im speziellen zu verbessern.

Kapitel 3 beschreibt den Entwurf und die Implementierung eines generi-
schen, wiederverwendbaren und flexiblen Anwendungsframeworks für gra-
fische Benutzerschnittstellen und Editoren visueller Sprachen. Eine beson-
ders wichtige Rolle spielt dabei die Implementierung eines objektorientierten
Constraint-Solvers für das Layout der Komponenten.
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